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     Multiuser detection is a technology that spawned in the early 80’s.  It has 
now developed into an important, full-fledged field in multi-access 
communications. 
     Multiuser Detection (MUD) is the intelligent estimation/demodulation of 
transmitted bits in the presence of Multiple Access Interference (MAI). 
MAI occurs in multi-access communication systems (CDMA/ TDMA/ 
FDMA) where simultaneously occurring digital streams of information 
interfere with each other. Conventional detectors based on the matched 
filter just treat the MAI as additive white gaussian noise (AWGN).  
However, unlike AWGN, MAI has a nice correlative structure that is 
quantified by the cross-correlation matrix of the signature sequences.  
Hence, detectors that take into account this correlation would perform better 
than the conventional matched filter-bank. MUD is basically the design of 
signal processing algorithms that run in the black box shown in figure 0.1. 
These algorithms take into account the correlative structure of the MAI. 
 
 

Figure  0.1  A typical multiuser detector 
 

 

0.1 Overview of the project 
     This project investigates a couple of different approaches to linear   
multiuser detection in CDMA systems.  Linear MUDs are detectors that 
operate linearly on the received signal statistic i.e., they perform only 
linear transformations on the received statistic. 
     This report assumes that the reader has a basic knowledge of 
probability theory and random processes and is familiar with the 
fundamental concepts of spread spectrum and CDMA systems.   
   

0.2 Organization of the report 
      This report has been typeset in the 2-column landscape format to 
help preserve continuity in the mathematical development in some 
sections.  The reader need not keep flipping pages to keep up with the 
large number of equations that are involved in certain sections.   The 
report is orgainzed as follows: 
•  The next sub-section introduces the system model that will be used 

throught this project. 
•  Section I presents the conventional method of demodulating 

mutually interfering signals: the matched filter (which treats the 
MAI as AWGN). 

•  Section II studies the decorrelating detector which takes the 
matched filter one step further by taking into account the 
correlative structure of the MAI. 

•  Section III presents the minimum mean square error (MMSE) 
linear detector which is a compromise between the matched filter 
approach and the decorrelating detector.  Two different adaptive 
implementations (least mean square or LMS and blind adaptation) 
are implemented and the convergence properties are studied. 

 
0.3 System model 
     The K-user discrete time basic synchronous CDMA model has 
been used throughout the development of this project.  The case of 
antipodally modulated user information (BPSK modulation) spread using 
BPSK spreading is considered.  To make the project realizable in the time 
allocated, a very small spreading sequence of length 31 was used.  A 
preferred pair [1,2] of m-sequences generated by the primitive polynomials 
<45> and <75> were used for all the 2-user scenarios. For the number of 
users greater than 2, gold codes generated by the 2 m-sequences  



 

described above were used.  See Appendix A for a list of codes in this 
project.  Unless otherwise mentioned, in all the simulations perfect power 
control is assumed (i.e, the received amplitudes of all the users are assumed 
to be the same.  The signal at the receiver is given by 
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kkk n(t)(t)sbAy(t) ………………………………(0.1) 

, where  
•  sk is the signature waveform of the kth user (sk is normalized to 

have unit energy i.e., < sk ,sk > =1).  For BPSK spreading with an 
m-sequence of length 31, the signature waveform is defined as 
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                   where ak represents the normalized spreading sequence. 
•  bk is the input bit of the kth user,  bk ∈ {-1,1}. 
•  Ak is the received amplitude of the kth user. 
•  n(t) is additive white gaussian noise with PSD No . 

     Since synchronous CDMA is considered, it is assumed that the receiver 
has some means of achieving perfect chip synchronization.    
     The cross-correlation of the signature sequences are defined as 
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jijiij (k)(k)ssssρ ………………………………(0.3) 

where N is the length of the signature sequence (31 in our case). 
     The cross-correlation matrix is then defined as 
            R={ρij} 

i.e., 
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R is a symmetric, non-negative definite, toeplitz matrix. 
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     This section introduces and analyses the matched filter bank detector 
which was the conventional and most simplest way of demodulating 
CDMA signals (or any other set of mutually interfering digital streams).  
The matched filter also forms the front-end in most MUDs and hence 
understanding the operation is crucial in appreciating the evolution of MUD 
tech
 
2.0 er Operation  
     I tional single-user digital communication systems, the matched 
filte to generate sufficient statistics for signal detection.  In the case 
of a ser system, the detector consists of a bank of matched filters 
(eac d to the signature waveforms of different users in the case of 
CDM is is shown in figure 1.1.  This type of detector is referred to as 
the c nal detector in MUD literature.  It is worth mentioning that we 
need knowledge of the users signature sequences and the signal 
timi er to implement this detector. 
 

     The decision statistic a the output of the Kth matched filter is given by 
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………………..………………….(2.1) 

where y(t) and sk(t)  is given by (0.1) and (0.2).  Expanding (2.1), 
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Using (0.3) 
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Since ρ11=1, (2.3) simplifies to 
nology. 
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The 2nd term in (2.5) is the MAI.  The matched filter treats the MAI just as 
white noise. The noise variance at the output of the matched filter is given 
by

Similarly, the noise covariance can be shown to be 

ijoji ρN)nE(n = …………………………………..……(2.7) 
Hence the noise covariance matrix can be defined as 

{ } Rnn oijijo
T NρN]E[ == …………………………..(2.8) 

where R is given by (0.4) and n=[n1,n2,…,nk]T.  Stacking up (2.5) for all 
the users we get 

Figure 1.2 A matched filter bank

…(2.6)
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     ….......(2.9) 

∴  In matrix notation we have, 
y=RAb+n………………………………………………(2.10) 

Figure 2.2 shows the error rate performance of the bank of matched filters.  
The simulation scenario is explained in section 0.3.   It is observed that as 
the MAI increases (the number of users increases) the performance becomes 
poor.  This is because the detector ignores the cross-talk between users (the 
MAI) as white noise.  Good MUDs, as described in the next few sections, 
take into the account the correlative property of the cross-talk. 
 

2.1 Limitations of the conventional detector  
     Although {y1,y2,…,yk} are sufficient statistics for detecting 
{b1,b2,…,bk}, yk is not a sufficient statistic for detecting bk.  The 
conventional detector makes the mistake of making this assumption (yk is a 
sufficient statistic for detecting bk) by ignoring the MAI as background 
noise.  This is one reason for the poor performance of the matched filter 
bank when the number of users is large.   
     Another serious limitation of the conventional detector is that it is 
seriously affected by the near-far problem.  This causes a significant 
degradation in the system performance even when the number of users is 
very small. This fact will now be illustrated with an example. This example 
is a condensed version of a scenario described in [3].   Adapting (2.5) to the 
2 user scenario we get, 

1122j2111 nρbAbAy ++= ……………………………..(2.11) 
It is now obvious that the bit error probability for user 1 is 
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The probability of bit error is then readily upper bounded as  
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The fact that Q is a monotonically decreasing function was used to get the 
upper bound.  If the interferer is not dominant i.e., A2ρ12<A1, the bit error 
probability is less than half.  But if the interferer is dominant (near-far 
problem) i.e., A2ρ12>A1, the bound becomes greater than half. Consider 
the case when there is no noise in the system (i.e., No=0) and the interferer 

is dominant, then (2,13) gives 
2
1P

1s = .   This is because the polarity of the 

matched filter outputs is now governed by b2 rather than b1.  Hence we see 
that in the absence of noise, though highly hypothetical, the matched filter 
receiver reduces to flipping a coin and deciding the output bits. This is an 
undesirable feature of the conventional detector (may perform better in the 
presence of noise than in the absence of noise). 

Figure 1.2 B.E.R performance of the matched filter bank detector 
(perfect power control) 



 

 
2.2 The conventional detector as a front end to MUDs 
     The front end of any MUD has a section to convert the continuous-time 
received signal to a discrete-time process.  This is usually done by sampling 
or it can also be done using the matched filter bank.  As shown earlier, the 
conventional detector takes the received signal y(t) and outputs the statistic 
y={y1,y2,…,yk}T.  It has been proved [3] that the matched filter bank 
sacrifices no information relevant to demodulation.  Hence y(t) can be 
replaced by y without any loss in system performance.   Most MUDs 
therefore have the matched filter as the front end. 
     With the matched filter front end, the objective of MUD can be stated as 
follows: 
Given the statistic {y1,y2,…,yk} at the output of the matched filter, find an 
estimate for the transmitted bits {b1,b2,…,bk} that minimizes the 
probability of error. 
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     While concluding Section 2.1 it was noted that the matched filter bank 
may decode erroneously even in the absence of background AWGN.  This 
is not a very attractive property for any receiver. An optimal receiver must 
be capable of decoding the bits error-free when the noise power is zero.  In 
this section the decorrelating detector is investigated. This detector makes 
use of the structure of MAI to improve the performance of the matched 
filter bank. The decorrelating detector falls into the category of linear 
multiuser detectors.  This fact will be substantiated as this section 
progresses. 
 
2.0 Receiver Operation 

As shown in figure 2.1, the decorrelating detector operates by processing 
the output of the matched filter bank with the R-1 operator where R is the 
cross-correlation matrix as defined in (0.4).   

 
The output of the decorrelating detector is given by 

 
 
 

Figure 1.1  Decorrelating Detector 

               ( )( )nRAbRb += −
∧

1sgn ………………………………..(2.1) 

                   ( )nRAb 1sgn −+= …………..…….…………………….(2.2) 
When the background noise is absent, i.e., No=0, 

( )Abb sgn=
∧

……………………………….………………(2.3) 

i.e.,           bb =
∧

 ………………………………………………………(2.4) 
     Hence, we observe that in the absence of background noise the 
decorrelating detector achieves perfect demodulation unlike the matched 
filter bank.  One advantage of the decorrelating detector is that it does not 
require knowledge of the received signal amplitudes unlike the detector 
described in the next section. 

     Consider the two user case, with 
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R , where  

ρ is the cross-correlation between the normalized signature waveforms of 
user 1 and user 2.  
The decoded bits are given by (2.1), 
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We see that the decorrelating receiver performs only linear operations on 
the received statistic y and hence it is indeed a linear detector.  The 
decorrelating detector is proved to be optimal under 3 different criteria: 
least squares, near-far resistance and maximum-likelihood [3]. 
     As in the previous section the bit error rate plots have been obtained for 
the 2 uses and 10 user cases and are shown in figure 2.2.  The simulation 
scenario is described in section 0.3.  Comparing figure 2.2 and figure1.2, we 



 

 see that for the 10 user case, as the SNR increases, the performance of the 
decorrelating detector is better.  Again, in the simulations, perfect power 
control was assumed.  Figure 3.4, figure 3.5 and figure 3.6 show a 
comparison of the performance of the matched filter bank and the 
decorrelating detector.  It is observed that at low SNRs the matched filter 
performs better.  Hence, the decorrelating detector is not an optimal (in 
terms of B.E.R) detector. 
 

 
Figure 2.2 B.E.R performance of the decorrelating detector. 
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     In section II we noted that the only information required by the 
decorrelating detector was the cross-correlation matrix R of the spreading 
sequences. At low SNRs, the matched filter bank performs better than the 
decorrelating detector as observed from figure 3.6. Hence, it might be 
possible to improve the performance by incorporating some SNR 
information in the MUD algorithms. In this section, one such approach is 
investigated where the mean squared error between the output and data is 
minimized. The detector resulting from the MMSE (minimum mean square 
error) criterion is a linear detector.  
     Two different adaptive approaches of the MMSE linear detector are also 
studied at the end of this section. One of the approaches requires no prior 
information of the SNRs or the signature waveforms but requires a training 
sequence to adapt and compute the optimum weights to be applied on the 
received statistic.   The other approach does not need a training sequence 
but requires exact knowledge of the signature sequence. 
 
3.0 Receiver Operation 
     Being a linear detector like the decorrelating detector, the MMSE 
receiver also weights the received statistic y with a weight vector w to form 
the decision statistic. The receiver structure for user m is shown in figure  
3.1. 
 

 
Figure 3.1 MMSE linear transformation for user m 

 
It has been proved that minimizing the MSE at the output of the linear 
transformation is equivalent to maximizing the SIR at the output of the 
linear transformation [3]. The optimal value of the [w1,w2,…wk] that 

minimizes the MSE between the weighted received statistic and the 
transmitted bit is derived in the next section. 
 
3.0.1 Optimal Weights for an MMSE Linear Detector in 

an AWGN Channel 
 
     The MMSE linear detector for user 1 determines a waveform c1(t) such 
that the MSE error between the transmitted bit and the correlation between 
c1(t) and the received signal y(t) is minimized. The objective function (the 
mean square error in this case) is defined as 
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In the finite dimensional representation (3.1) can be expressed as   
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Where {w1, w2, … , wK} are the weights operating on the received statistic  
{ y1, y2,…, yK}.   
Representing (3.2) in a compact and convenient matrix notation, 
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Using linearity of the Expectation operator, 

 

( ) ( ) ( )( ){ }TTTT
1

2
1 E2bEbE)( ywywyww +−=Ψ ……………….(3.4) 

 
Since the bits of user 1 are i.i.d, ( ) 1bE 2
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From (2.10), we have 
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Since the bits of user 1 are i.i.d and are uncorrelated with the bits of other 
users we have, 
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Using (3.11) and the fact that the noise n is zero mean i.e.,E(n)=0 in 
(3.10), 

( ) [ ]T0 0  0  1bE 1 �RAy = ……………………………….…(3.12) 
 

Using the definition of  A and R from (0.4)and (2.9), 
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Now consider the second expectation term in (3.6), 
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Using the fact that A and R are symmetric matrices, we get 
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Substituting (3.14) and (3.18) in (3.6), 
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Equation (3.19) gives the objective function (MSE) that should be 
minimized according to the MMSE criterion.  Performing a matrix 
derivative operation on (3.19) we get, 
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We used the fact that ( ) No
2 RRRA + is a symmetric matrix to get 

(3.20). The optimum weights that minimize the MSE can be obtained by 
equating )(wwΨ∇ to zero. Hence, 
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Solving (3.21) the optimal weights are obtained as 
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To calculate the optimal weights for user m, just replace i1ρ by m iρ for all i 
and replace A1 by Am in (3.22).  (3.22) can be written in a more general 
and compact form as 
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(3.23) explains  the operation of the receiver. The receiver just weights the 
received statistic with optw  and makes a decision as shown in figure 3.1.  
This leads to the receiver architecture shown in figure 3.2. 
 
 

 
Figure 3.2   MMSE linear detector 

 

 
It is shown in [3] that the MMSE receiver maximizes the SIR at the output 
of the transformation shown in the above figure.  Figure 3.3 shows the 
performance of the MMSE linear detector in an AWGN channel.  The 
simulation scenario is identical to the one used in the previous sections.  For 
the sake of comparison the bit error rates of the detectors described so far 
have been plotted in figures 3.4, 3.5 and 3.6. 

 
Figure 3.3 B.E.R performance of the MMSE linear detector 

 
3.1 Adaptive Implementations 
     As seen in sections II and II, the implementations of the decorrelating 
detector and the MMSE linear detector involves matrix inversion 
operations.  If the number of users become large the size of the matrix to be 
inverted grows and hence the computation time of such a matrix inversion 
becomes unacceptable.  For the decorrelating detector R-1 can be pre-
computed  and stored.  However for an asynchronous system, R is time 
varying and hence such pre-computation will not work.  The MMSE  



 

 
 
 

 

 
 
 
 
detector requires the SNR information and hence again precomputation of 
the matrix inverse is not a feasible solution.  Also, getting good estimates of 
the SNR is not temporally efficient.  Therefore, it would be nice if there was 
some way to eliminate the need to compute matrix inverses and the need to 
have apriori information (signature sequences) and  other additional 
information (SNR)  for decoding.  This objective can be realized through 
adaptive MUD algorithms.  Adaptive algorithms “learn” the desired filter 
response from the received signals.   There are different approaches to 
implement the “learning” capability.  Two approaches will be studied in the 
next sub-sections.  The first approach does not any apriori knowledge but 
calls for a training sequence.  The second approach does not require any 
training sequence but requires exact knowledge of the signature sequences 
of the users and also takes longer to converge.  

Figure 3.4.BER plots for the detectors described in section I ,II and III (2 user case) 

Figure 3.5 BER plots for the detectors described in section I ,II and III (10 user case) 

 
Fig  3.6   A zoomed version of the BER plot of the figure 3.4 showing the 

performance of the linear detectors at low SNRs 



 

 
 
3.1.1 Adaptive MMSE Linear Detection (LMS Algorithm) 
      Before the LMS (least mean square) algorithm is described, a brief 
review of  the gradient descent optimization algorithm is presented. A more 
detailed presentation of this algorithm can be found in [3,4]  
     The gradient descent  algorithm is used for the optimization of convex 
penalty functions.  Consider the optimization of the following convex 
penalty function : 

u)]E[g(X,)u( =Ψ ……………………………………….(3.25) 
where E is the expectation operator ,  X is a random variable and u is the 
parameter to be optimized (X and u could be vectors).  If ψ is convex, then 
according to the gradient descent algorithm, it is possible to converge to the 
minimum valuse of ψ by starting at any point uo and following the 
direction opposite to the gradient ∇ψ  (steepest descent).  The update rule is 
then given by 

( )jj1j uµ-uu Ψ∇=+ , where µ is the step size…..…….(3.26) 

     However, if the distribution of X is not known then neither the penalty 
function given by (3.25) nor its gradient can be computed.  But if a number 
of independent observations of X are available then it would be possible to 
get an estimate of the distribution of X and calculate the gradient of the 
penalty function and use the update rule given in (3.26). Therefore, at each 
iteration we could replace the gradient of the penalty function, 
∇ψ =E[∇ g(X,u)] by its approximate value ∇ g(Xj+1,u). This is called 
the stochastic gradient descent algorithm.  The update rule for the stochastic 
gradient is thus modified as  

( )j1jj1j u,Xgµ-uu ++ ∇= …………………….……..(3.27) 
     If the step size is infinitesimally small,  then the deviations on either side 
of the mean tend to cancel out and the trajectory of the stochastic descent 
will almost follow the steepest descent trajectory.  For the special case of 
quadratic cost functions, the stochastic descent algorithim is also known as 
the least mean square (LMS) algorithm.  
     For the case of  MMSE multiuser detection in CDMA systems, the 
convex penalty function is given by (3.3) . Hence  

( )2T
 1b),(g ywwX −=  , where X=(b1, w)………...(3.28) 

Differentiating w.r.t w, ( )yywwX  b2),(g T
 1 −−=∇ ………….(3.29) 

Since Xj=(b1[j], y[j]), the update rule in (3.27) becomes 
 
 

( ) ]j[ ]j[b-[j]]1-j[µ-]1-j[]j[ 1
T yywww =    …….(3.30) 

 
     It is seen that we need to know the data bits b1 in order to implement the  
LMS algorithm. This requirement is handled by sending a training sequence 
at the beginning of each transmission.  Once the training sequence has been 
sent, the adaptive algorithm can be allowed to run with the decisions made 
by the detector instead of the true transmitted data. This mode of operation 
is called decision directed operation.This might fine tune the weights if the 
SNR is high enough. However if the SNR is very low, the decisions of the 
detector are not reliable enough and may cause the weight to change 
drastically from the optimal value.  In the simulation results presented in 
this report, the decision directed mode was not used. Once the training bits 
are sent, the weights were not changed. 
      The longer the training sequence, the closer are the computed weights to 
the optimal value given by (3.23).  The training bits however are a overhead 
and the number of training bits needs to be as small as possible in order to 
maintain system efficiency.  Hence there is a tradeoff between  efficiency 
and error performance that needs to be considered when deteremining the 
number of training  bits that needs to be used in a system.  This is observed 
by comparing figure 3.7 and figure 3.9 which show that the weights w1 and 
w2 (in the 2 user case) do not converge to the optimal value with just 1000 
training bits. However when 5000 training bits are sent, the weight vectors 
were closer to the optimal value (as observed from the MSE curve, figures 
3.8 and 3.10 ).  The simulations were run with an SNR of 10dB and the 
optimal values required to calculate the MSE were obtained from (3.23). 
     Apart from the number of training bits another important parameter that 
affects the performance and convergence speed of the the LMS algorithm is 
the step size.  A larger step size makes the algorithm converge faster but has  
a higher ripple around the optimal value.  This can be observed by 
comparing figures 3.9and  3.13  and also figures 3.10 and 3.14.  



 

Figure 3.7 Weight vector convergence for 1000 training bits 
 

 

 
Figure 3.9 Weight vector convergence for 5000 training bits 

 

 Figure 3.10  MSE variation for 5000 training bits Figure 3.8  MSE variation for 1000 training bits 

Performance of the LMS linear detector 
with a step size µ=0.001 



 

 
Figure 3.11 Weight vector convergence for 1000 training bits 

 

 

 
Figure 3.13 Weight vector convergence for 5000 training bits 

 

 Figure 3.12 : MSE variation for 1000 training bits Figure 3.14 : MSE variation for 5000 training bits 

Performance of the LMS linear detector 
with a step size µ=0.01 



 

Observing figure 3.7 and figure 3.11 we see that with a larger step size, the 
weights converge to the optimal value with  a smaller number of training 
bits but at the cost of  a higher residual error (weights do not converge to 
optimal value with a step size of 0.001 and 1000 training bits but if the step 
size is increased to 0.01, the weight vectors converge  around the optimal 
value with just 1000 bits). Conversely, a smaller step size takes longer to 
converge(requires more training bits) .  
      From the above discussion, it is clear that it would be nice to 
progressively decrease the step size as the LMS algorithm proceeds. A high 
value of step size should be used initially to cause fast convergence of the 
the algorithm and then in the latter iterations a smaller step size should be 
used to minimize the ripple around the optimal value (residual error). But 
great care should be excercised in using adaptive step sizes. Sometimes the 
step size may become really small as the algorithm progresses and the 
weights may never converge to the optimal value.  One method of 
progressively shrinking the step size is to multiply a fixed step size by γi 
where i is the iteration number and γ is a number just smaller than 1. Hence 
the update rule is given by 

   ( ) ]j[ ]j[b-[j]]1-j[µ-]1-j[]j[ 1
Ti yywww γ= …………(3.31) 

 

The convergence of the weights with this adaptive step size is shown in 
figure 3.15.  In the simulations, γ =0.995 and µ=0.01.  We can see that the 
step size becomes very small as the algorithm progresses and the weights do 
not converge. Hence, this is not a suitable strategy for varying the step size 
in this case.   
     Another method of progressively decreasing the step size is to have a 
step size of the form 1/i, where i is the iteration number. Hence the update 
rule is modified as 

( ) ]j[ ]j[b-[j]]1-j[
i
1-]1-j[]j[ 1

T yywww = ……………(3.32) 

     The convergence plots for this step size is given in Figure (3.16).  Also 
plotted are convergence plots with a fixed step size of 0.01 for comparison. 
We see that this method of  varying the step size converges very fast to  the 
vicinit of the optimal value. For the a step size of the form 1/i it has been 
proved [3] that the update rule given in (3.32) will always converge to the 
optimum value.  
    If the channel changes often, then training bits need to be sent 
periodically.  The choice of step size, whether it should be fixed or 
stationary, depends on the application, channel and other cost factors.   
   Since, the detector requires no knowledge of the signature sequence, why 

 
 

          

Figure 3.16 Weight vector convergence for the update rule in (3.32) Figure 3.15 Weight vector convergence for the update rule in (3.31) 



 

doesn’t the detector converge to some other users MMSE detector (say the 
user with the strongest power)?  This is because of the training sequence 
which governs the desired users LMS algorithm. Hence, each user should 
have a different training sequence.  Hence, we see that the LMS MUD is 
not limited by the near far problem.  
 
3.1.2 Blind Adaptive Multiuser Detection 
      The convergence of the LMS algorithm rests on the fact that the 
received amplitudes, cross-correlations and channel conditions remain 
constant.  If any of these parameters change suddenly (a strong interfere is 
powered on or the channel suddenly goes into a deep fade), then in the 
decision directed mode of operation the weights may not converge because 
the detector starts making faulty decisions or in the fixed mode of operation 
the weights are no longer optimal.  This calls for the training sequence to be 
sent again.  Thus, the detector needs to be able to detect sudden changes in 
the system environment and request for the training sequence to be sent 
again.  This is a cumbersome procedure requiring a lot of overhead.  Hence, 
it is desirable to have an adaptive algorithm that operates without having to 
know the data.   Algorithms that operate without knowledge of the channel 
input are known as blind algorithms (the algorithm is blind to the data).  
Blind adaptive multiuser detection was first introduced by Honig et al in 
1995 [5].  Before the blind MUD algorithm is presented the canonical 
representation of linear multiuser detection introduced in [5] is discussed. 
     The blind MUD approach is based on decomposing the linear MUD 
filter response into two orthogonal components.  One of the components is 
equal to the signature waveform of the desired user.  Consider the linear 
detector of user 1 which is characterized by the filter response c1, 

)cy,sgn(b 11 ><=
∧

………………………………....(3.33) 
The canonical representation of c1 is  

c1= s1+ x1……………………………………………(3.34)  
where     <s1, x1>=0….………………………………………………(3.35) 

s1 in (3.34) and (3.35) is the signature waveform of user 1.  Therefore, 
according to the canonical representation every linear MUD is characterized 
by its orthogonal signal x1 (since s1 is assumed to be known).  Given a 
linear transformation d1 the orthogonal component is given by 

11
11

1 sd
d,s

1x −
><

=   …………………………………..(3.36) 

This can be verified by applying (3.35) to (3.36). Using (3.34) in (3.33) we 
have, 

)xsy,sgn(b 111 >+<=
∧

 ……………………………..….(3.37) 
Using the definition of y from (0.1)  
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∧
……(3.38) 

Just as done in section 3.0.1, it can be proved that  
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………………………………………………..(3.39) 

The variance at the output of the linear transformation in (3.37) is given as  
{ }2

11 )xsy,(E >+<  ……………………………………………(3.40) 
This is also referred to as the output energy in literature. Using the 
definition of <y,s1+x1> in (3.40) we can express the output energy as 

 
……………………..(3.41) 

We have used the fact that the bits of user 1 are uncorrelated with the bits of 
the other users and the noise. The first term in (3.41) is the signal energy 
and the two other terms represent the interference energy (MAI + noise).  
Due to the canonical representation we can see that the signal energy is 
transparent to the choice of x1.  We can intuitively see that choosing x1to 
minimize the output energy would be a sensible idea since this would just 
minimize the interference energy.   This type of detector is referred to as the 
minimum output energy (MOE) detector.  Denote the minimum output 
energy as  

{ }2
111 )xsy,(E)x(MOE >+<= ……………………….(3.42) 

From section 3.01, the minimum MSE is given by 
{ }2

11111 )xsy,-b(AE)x(MSE >+<= ……………….(3.43) 



 

i.e., ( ) ( )2
o
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2
k1 x1Nx,sρA)MSE(x ++><+=∑

=

….(3.44) 

=>  2
111 A)MOE(x)MSE(x −=   (using (3.41)) ………………(3.45) 

∴  We can see that the MSE and MOE differ only by a constant (thanks to 
the canonical representation).  Hence, the arguments that minimize both the 
functions are the same. This is a crucial observation from the point of view 
of the adaptive implementation.  It tells us that if we try to minimize the 
MOE (same as minimizing the MSE), we do not need any training sequence 
to implement the gradient descent algorithm (since the MOE does not 
depend on the data).  Hence we end up with an adaptive MMSE detector 
without the need for any training sequence.  This is the basis for the blind 
adaptive multiuser detector.   
     The steepest descent algorithm (described in the previous subsection) is 
again used to derive the update rule for the adaptive algorithm.  We just 
need to update the orthogonal component to s1 since we are trying to obtain 
the minimum of the MOE by changing just x1. Therefore we just need to 
follow the steepest descent in the direction orthogonal to s1. To do this we 
just take the gradient of the MOE and project it on the subspace orthogonal 
to s1.   The gradient of the MOE given in (3.42) is  

yxsy,2)x(MOE 111 >+<=∇ ………………..……………..(3.46) 
The component orthogonal to s1 is y- <y,s1> s1.   Using this in (3.46) we 
get the gradient projected onto a subspace orthogonal to s1 as 

2< y,s1+x1>[y- <y,s1> s1]…………………..……….(3.47) 
The adaptive algorithm update is done once every T seconds, where T is the  
bit period. The received waveform is slotted into waveforms of duration T, 

...y[i-1], y[i], y[i+1]… 

Define,    ><=
∆

1MF sy[i],]i[Z …………………..……….…….…(3.48) 

>−+<=
∆

1][ixsy[i],]i[Z 11 ……………………….(3.49) 
Using (3.49) and (3.48) in (3.47) and using the update rule in (3.27), the 
update rule for the blind adaptive MUD is given by 

( )1MF11 [i]sZy[i]µ Z[i]1][ix[i]x −−−= …………(3.50) 

Finite precision implementation of the above update rule can have effects 
that are not immediately visible but that have a cumulative effect.  It may  
happen that finite precision round off errors drive the updates of x1 to be 
outside the orthogonal space. This is shown in figure 3.17 for two different 
values of step sizes.  The simulations were run with 2 users and perfect 
power control. On the y axis, a measure of the orthogonality between x1and 
s1 (<x1, s1>) is plotted for each iteration.  Though  <x1, s1> is small, we 
can see that the value keeps increasing implying that  x1 keeps falling more 
and more outside the orthogonal subspace. 

  
Figure 3.17 Finite precision implementation errors in the blind update rule 

 
     This problem can be solved by replacing the update x1 by its orthogonal 
projection: 

x1[i]- <x1[i], s1[i]> s1.......................................................(3.51) 
Figure 3.18 plots the orthogonality between x1and s1 after replacing x1 by 
its orthogonal projection. We now observe that the value of <x1, s1> 
oscillates around the same value.   



 

 
Figure 3.18 Effect of the substitution in (3.51) on finite precision errors  

 
It was observed earlier that the first term in (3.41) represented the signal 
energy and the second term in (3.42) represents the interference energy.  
Therefore, the signal to interference ratio for user 1 can be written as  

( ) ( )2
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……(3.52) 

     It can be inferred from looking at (3.41) that minimizing the output 
energy is the same as minimizing the denominator of (3.52).  Therefore just 
like the MMSE detector the MOE detector also maximizes the output SIR 
(another way to prove that the two detectors are equivalent).  Figure 3.19 
shows how the SIR increases with each iteration (the SNR was 10dB with 
10 users in the system).   
    Figure 3.20 shows the convergence of one of the components of x1.  By 
looking at the convergence plots of the LMS detector we observe that the 
blind detector takes a lot longer converge.   

 
Figure 3.19 SIR at each iteration of the blind MUD algorithm 

 

 Figure 3.20 Convergence of 1 componant of  x1 



 

     It is not really fair to compare the LMS and blind detectors in terms of 
the bit error rate because the performance depends on how long the 
algorithm is allowed to converge(also the two algorithms do not behave the 
same way for the same step size).  Once the algorithms converge, the error 
performance should ideally be that of the MMSE linear detector. But to give 
a rough idea, the BER error rates for the 2 user case are plotted in Figure 
3.21.  The LMS algorithm was given 1000 training bits and had a step size 
of 0.01.  The blind detector had a step size of 0.005.  Hence, the comparison 
is not really a good one, however it seen that the performance is almost the 
same. 

 
Figure 3.21 BER performance of the MMSE,LMS and blind detectors 

 
 
 
 
 
 
 
 

CONCLUDING REMARKS 
     This report is a compilation of different approaches to linear multiuser 
detection.  The requirement of this technology was motivated by studying 
the conventional detector. The matched filter bank just ignores the 
correlative structure of the MAI present in CDMA systems.  Further, it was 
also shown that in the absence of noise, the conventional detector is a 
totally unreliable detector.  This called for the need for better detectors. 
     The decorrelating detector was then introduced which takes the 
conventional detector one step further by incorporating the correlative 
structure of the MAI in the detection.  However, it was noted that at low 
SNRs the conventional detector performed better than the decorrelating 
detector.  This implied that the decorrelating detector could be improved 
upon. 
    The MMSE linear detector was then shown to take the decorrelating 
detector one step further by incorporating some SNR information along 
with the correlative structure of MAI.  Thus, the performance was better 
than the decorrelating detector at low SNRs.  It must also be noted that 
when the background noise is totally absent (infinite SNR), the MMSE 

operator   ( ) 12
oN −−+ AR  reduces to ( ) 1−R , which the decorrelating 

operator.  Hence the decorrelating detector can be thought of as an 
asymptotic instance of the MMSE linear detector. However, the 
implementation of the MMSE linear detector required knowledge of 
received signal amplitudes (to calculate the SNR) apart from the correlation 
matrix and timing information (required by the decorrelating detector). 
   Two different adaptive approaches to linear MMSE detection that operate 
without knowledge of received amplitudes was then discussed.  The LMS 
detector required no knowledge of the signature sequences but called for 
training sequences.  The blind detector required only the same knowledge 
as required by the conventional detector, the signature sequences and the 
timing. The convergence properties of the two adaptive algorithms were 
also studied.  When compared to the LMS algorithm the blind algorithm 
takes a very long time to converge. 
    The choice of the MUD algorithm depends on a lot of factors like the 
application, channel information available, availability of training 
sequences, complexity cost and overhead involved.  To pick one out which 
is the optimal one or the best one is not an easy task!  
 



 

APPENDIX A : The 10 gold codes used in the simulations  
 

User Code 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0  
1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0  
0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1  
0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1  
0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1  
0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1  
1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1  
0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0  
0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1  
0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1  
 

 
The codes must be converted to 1s and -1s and then normalized to have unit 
energy before they can be used in the simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B: The MATLAB codes used in the simulations. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%code for generating the m-sequence of length 31%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;  
clc;  
%%%%%% enter tap weights as an array h=[h1,h2,..h6] 
%%%%%%%%%%%  
%h=[0 0 0 0 1 1];% 103 ---this is the primitive polynomial <103> 
%h=[1 0 0 1 1 1];%147  
h=[1 1 1 0 1];%75  
%h=[0 0 1 0 1];%45  
%h=[1 1 0 0 1 1];%163  
%h=[1 0 0 0 0 1];%141  
%%%%%% enter intial state of the register as an array u=[u1 u2 u3 u4 u5 
u6]  %%%%%%%%%%%  
%fid=fopen('/home/users/arun/sscdma/project/mseq31_primploy45.txt','a');  
for i=1:31  
   u=dec2bin(i,5);  
   u=u-48;  
    u(6)=0;  
     output=[];  
 
        for shift=1:31  
    output=[output,u(1)];  
           temp=u(1);  
    for n=2:6  
      u(n-1)=xor( u(n),(h(n-1)*temp) );  
            end  
   %u(1:6)  
   end  
   %output  
   t=[output,output];  
   if t(1,2:31)==t(1,2*(2:31)-1)  
      charphase=output;    
   end  
 end  



 

 
save mseq31primpoly75.mat charphase;  
u=charphase; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%code for generating the gold codes%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
N=31%pn code length
num_users=10;

load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
u(1,:)=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
u(2,:)=charphase;
fid=fopen('/home/users/arun/sscdma/project/codes.txt','a
+');
%shift and add
for j=1:num_users-2

u(j+2,:)=xor(u(1,:),u(2,[j+1:end 1:j]));
end
for i=1:num_users

for j=1:N
fprintf(fid,'%d ',u(i,j));

end
fprintf(fid,'\n');

end
fclose(fid);

%convert to ones and minus 1's
u=2*u-ones(num_users,N);
u=u/sqrt(31);%normalize the auto-correlation

%calculate the cross-correlation matrix
for i=1:10

for j=1:10
R(i,j)=sum(u(i,:).*u(j,:));

end
end
save '/home/users/arun/sscdma/project/10goldcodes.mat'…

u R;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%code for generating the matched filter (2 users) %%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;  
clc;  
N=31;  
K=2;%%%%no of users  
No=0.6;  
Nodb=10*log10(1/No)  
%No=N*No;  
no_of_bits=1000;  
%%%%get signature sequences  
load '/home/users/arun/sscdma/project/mseq31primpoly45.mat'  
a1=charphase;  
load '/home/users/arun/sscdma/project/mseq31primpoly75.mat'  
a2=charphase;  
%%%%%%%generate the anitpodal sequence  
a1=2*a1-1;  
a2=2*a2-1;  
%%%%%%%normalize energy of signature waveforms  
a1=a1/sqrt(sum(a1.*a1));  
a2=a2/sqrt(sum(a2.*a2));  
 
A=[1 0;0 1];  
rho=sum(a1.*a2);  
R=[1 rho;rho,1];  
 
bits=round(rand(K,no_of_bits));  
b=2*bits-1;  
n=sqrt(No)*randn(K,no_of_bits);  
 
y=sign(R*A*b + n);  
%convert to ones and  
b_hat=(y+ones(K,no_of_bits))/2;  
 
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits  
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits



 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%code for the matched filter bank(2 users)%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;  
clc;  
N=31;  
K=10;%%%%no of users  
No=0.02;  
Nodb=10*log10(1/No)  
%No=N*No;  
no_of_bits=100000;  
%%%%get signature sequences  
%load '/home/users/arun/sscdma/project/mseq31primpoly45.mat'  
%a1=charphase;  
%load '/home/users/arun/sscdma/project/mseq31primpoly75.mat'  
%a2=charphase;  
%%%%%%%generate the anitpodal sequence  
%a1=2*a1-1;  
%a2=2*a2-1;  
%%%%%%%normalize energy of signature waveforms  
%a1=a1/sqrt(sum(a1.*a1));  
%a2=a2/sqrt(sum(a2.*a2));  
 
A=eye(K);  
load '/home/users/arun/sscdma/project/10goldcodes.mat'  
 
bits=round(rand(K,no_of_bits));  
b=2*bits-1;  
n=sqrt(No)*randn(K,no_of_bits);  
 
y=sign(R*A*b + n);  
%convert to ones and  
b_hat=(y+ones(K,no_of_bits))/2;  
 
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits  
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits  
avg_ber=0.5*(ber1+ber2)  
ber=sum(sum(xor(bits(1:K,:),b_hat(1:K,:)))/no_of_bits)/K 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%code for the decorrelating detector (2 users)%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
N=31;
K=2;%%%%no of users
No=0.03;
Nodb=10*log10(1/No)
no_of_bits=100000;
%%%%get signature sequences
load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;
%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));
A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];
bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);
y=sign(inv(R)*(R*A*b + n));
%convert to ones and -1s
b_hat=(y+ones(K,no_of_bits))/2;
%get the b.e.r as the average of the 2 users
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%code for the decorrelating detector (10 users)%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
N=31;



 

K=10;%%%%no of users
No=0.02;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=10000;
A=eye(K);
%get codes and R
load '/home/users/arun/sscdma/project/10goldcodes.mat'

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=sign(inv(R)*(R*A*b + n));
%convert to ones and
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%code for the MMSE linear detector (2 users)%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
N=31;
K=2;%%%%no of users
No=0.1;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=1000;
%%%%get signature sequences
load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;

%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));

A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];
novector(1:K)=No;
sigma2Aminus2=diag(novector);

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=sign(inv(R+sigma2Aminus2)*(R*A*b + n));
%convert to ones and minu ones
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%code for the MMSE linear detector (10 users)%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;
clc;
N=31;
K=10;%%%%no of users
No=0.02;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=10000;
%%%%get signature sequences
A=eye(K);
load '/home/users/arun/sscdma/project/10goldcodes.mat'

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);
novector(1:K)=No;
sigma2Aminus2=diag(novector);



 

y=sign(inv(R+sigma2Aminus2)*(R*A*b + n));
%convert to ones and
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%code for the LMS algorithm (2 users)%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
mu=0.01;
N=31;
K=2;%%%%no of users
No=0.08;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=100000;
%%%%get signature sequences
load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;

%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));

A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=(R*A*b + n);
%%%%%%%%%%%theoretical optimum weights
Wopt=inv(R*A*A*R+No*R)*[1;rho];

c1=[1,1]';
mean_squared_error(1)=sum((Wopt-c1).^2)/K;
c1=c1-mu*(c1'*y(:,1)-b(1,1))*y(:,1);
w1(1)=c1(1,1);
w2(1)=c1(2,1);

for i=2:no_of_bits
%c1=c1-mu*(0.995)^(i-1)*(c1'*y(:,i)-b(1,i))*y(:,i);

%%%variable step size
c1=c1-mu*(c1'*y(:,i)-b(1,i))*y(:,i);%%%%fixed step

size
w1(i)=c1(1,1);
w2(i)=c1(2,1);
mean_squared_error(i)=sum((Wopt-c1).^2)/K;

end
Wopt
bits_hat=sign(c1(1)*y(1,:)+c1(2)*y(2,:));
b_hat=(bits_hat+ones(1,no_of_bits))/2;
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits
figure(3);
subplot(2,1,1);
plot(w1);
subplot(2,1,2);
plot(w2)
figure(4)
plot(mean_squared_error);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%code for the blind MUD algo. (2 users)%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
mu=0.0005;
N=31;
K=2;%%%%no of users
No=0.1;
Nodb=10*log10(1/No)
no_of_bits=50000;
%%%%get signature sequences



 

load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
s1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
s2=charphase;
%%%%%%%generate the anitpodal sequence
s1=2*s1-1;
s2=2*s2-1;
%%%%%%%normalize energy of signature waveforms
s1=s1/sqrt(sum(s1.*s1));
s2=s2/sqrt(sum(s2.*s2));

bits=round(rand(K,no_of_bits));
b=2*bits-1;

n=sqrt(No)*randn(K,no_of_bits);
x1(1,1:N)=0;
for i=1:no_of_bits

transmitted_bits=b(1,i)*s1+b(2,i)*s2;
y=transmitted_bits+sqrt(No)*randn(1,N);%%received

%%statistic
zmf=sum(y.*s1);
z=sum(y.*(s1+x1(i,:)));
x1(i+1,:)=x1(i,:)-mu*z*(y-zmf*s1);
x1(i+1,:)=x1(i+1,:)-sum(s1.*x1(i+1,:))*s1;%replace by

%the orthogonal projection
%orth(i)=sum(s1.*x1(i+1,:));
b_hat(i)=sign(z);

sir(i)=1/(No*(1+sum(x1(i+1,:).*x1(i+1,:)))+(sum((s1+x1(i
+1,:)).*s2))^2);

end
b_hat=(b_hat+ones(1,no_of_bits))/2;
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%code for the blind MUD algo. (10 users)%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
mu=0.005;
N=31;
K=10;%%%%no of users
No=0.1;

Nodb=10*log10(1/No)
no_of_bits=1000;
load 10goldcodes.mat
bits=round(rand(K,no_of_bits));
b=2*bits-1;

n=sqrt(No)*randn(K,no_of_bits);
x1(1,1:N)=0;
for i=1:no_of_bits

transmitted_bits=zeros(1,N);
for k=1:10

transmitted_bits=b(k,i)*u(k,:)+transmitted_bits;
end
y=transmitted_bits+sqrt(No)*randn(1,N);%%received

statistic
s1=u(1,:);
zmf=sum(y.*s1);
z=sum(y.*(s1+x1(i,:)));
x1(i+1,:)=x1(i,:)-mu*z*(y-zmf*s1);
x1(i+1,:)=x1(i+1,:)-sum(s1.*x1(i+1,:))*s1;%replace by

the orthogonal projection
orth(i)=sum(s1.*x1(i+1,:));
b_hat(i)=sign(z);
mai=0;
for k=2:10

mai=mai+sum((s1+x1(i+1,:)).*u(k,:));
end
sir(i)=1/(No*(1+sum(x1(i+1,:)))+mai)^2;

end
b_hat=(b_hat+ones(1,no_of_bits))/2;
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits
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