

A project reported submitted in partial fulfillment of
the requirements of the course EEL6503:
Spread Spectrum and CDMA, Fall 2001

Submitted by
Arun Avudainaygam

Project Website: http://arun-10.tripod.com/mud/mud.html

LINEAR AND
ADAPTIVE

LINEAR
MULTIUSER
DETECTION

IN
CDMA SYSTEMS

SECTION 0

Introduction

 Multiuser detection is a technology that spawned in the early 80’s. It has
now developed into an important, full-fledged field in multi-access
communications.
 Multiuser Detection (MUD) is the intelligent estimation/demodulation of
transmitted bits in the presence of Multiple Access Interference (MAI).
MAI occurs in multi-access communication systems (CDMA/ TDMA/
FDMA) where simultaneously occurring digital streams of information
interfere with each other. Conventional detectors based on the matched
filter just treat the MAI as additive white gaussian noise (AWGN).
However, unlike AWGN, MAI has a nice correlative structure that is
quantified by the cross-correlation matrix of the signature sequences.
Hence, detectors that take into account this correlation would perform better
than the conventional matched filter-bank. MUD is basically the design of
signal processing algorithms that run in the black box shown in figure 0.1.
These algorithms take into account the correlative structure of the MAI.

Figure 0.1 A typical multiuser detector

0.1 Overview of the project
 This project investigates a couple of different approaches to linear
multiuser detection in CDMA systems. Linear MUDs are detectors that
operate linearly on the received signal statistic i.e., they perform only
linear transformations on the received statistic.
 This report assumes that the reader has a basic knowledge of
probability theory and random processes and is familiar with the
fundamental concepts of spread spectrum and CDMA systems.

0.2 Organization of the report
 This report has been typeset in the 2-column landscape format to
help preserve continuity in the mathematical development in some
sections. The reader need not keep flipping pages to keep up with the
large number of equations that are involved in certain sections. The
report is orgainzed as follows:
• The next sub-section introduces the system model that will be used

throught this project.
• Section I presents the conventional method of demodulating

mutually interfering signals: the matched filter (which treats the
MAI as AWGN).

• Section II studies the decorrelating detector which takes the
matched filter one step further by taking into account the
correlative structure of the MAI.

• Section III presents the minimum mean square error (MMSE)
linear detector which is a compromise between the matched filter
approach and the decorrelating detector. Two different adaptive
implementations (least mean square or LMS and blind adaptation)
are implemented and the convergence properties are studied.

0.3 System model
 The K-user discrete time basic synchronous CDMA model has
been used throughout the development of this project. The case of
antipodally modulated user information (BPSK modulation) spread using
BPSK spreading is considered. To make the project realizable in the time
allocated, a very small spreading sequence of length 31 was used. A
preferred pair [1,2] of m-sequences generated by the primitive polynomials
<45> and <75> were used for all the 2-user scenarios. For the number of
users greater than 2, gold codes generated by the 2 m-sequences

described above were used. See Appendix A for a list of codes in this
project. Unless otherwise mentioned, in all the simulations perfect power
control is assumed (i.e, the received amplitudes of all the users are assumed
to be the same. The signal at the receiver is given by

∑
=

+=
K

1k
kkk n(t)(t)sbAy(t) ………………………………(0.1)

, where
• sk is the signature waveform of the kth user (sk is normalized to

have unit energy i.e., < sk ,sk > =1). For BPSK spreading with an
m-sequence of length 31, the signature waveform is defined as

 ∑
=

=
30

0k
cTkk)kT-(tpa(t)s , T=bit period, Tc =chip interval… (0.2)

 where ak represents the normalized spreading sequence.
• bk is the input bit of the kth user, bk ∈ {-1,1}.
• Ak is the received amplitude of the kth user.
• n(t) is additive white gaussian noise with PSD No .

 Since synchronous CDMA is considered, it is assumed that the receiver
has some means of achieving perfect chip synchronization.
 The cross-correlation of the signature sequences are defined as

∑
=

==
N

1k
jijiij (k)(k)ssssρ ………………………………(0.3)

where N is the length of the signature sequence (31 in our case).
 The cross-correlation matrix is then defined as
 R={ρij}

i.e.,

=

KKKK

K

K

ρρρ

ρρρ
ρρρ

21

212221

11211

�

�

���

�

�

R ……………………….………(0.4)

R is a symmetric, non-negative definite, toeplitz matrix.

SECTION I

The
Matched-Filter

Bank

 This section introduces and analyses the matched filter bank detector
which was the conventional and most simplest way of demodulating
CDMA signals (or any other set of mutually interfering digital streams).
The matched filter also forms the front-end in most MUDs and hence
understanding the operation is crucial in appreciating the evolution of MUD
tech

2.0 er Operation
 I tional single-user digital communication systems, the matched
filte to generate sufficient statistics for signal detection. In the case
of a ser system, the detector consists of a bank of matched filters
(eac d to the signature waveforms of different users in the case of
CDM is is shown in figure 1.1. This type of detector is referred to as
the c nal detector in MUD literature. It is worth mentioning that we
need knowledge of the users signature sequences and the signal
timi er to implement this detector.

 The decision statistic a the output of the Kth matched filter is given by

(t)dty(t)sy
0

kk ∫=
T

………………..………………….(2.1)

where y(t) and sk(t) is given by (0.1) and (0.2). Expanding (2.1),

(t)dtsn(t)(t)sbAy
0

k

K

1j
jjjk ∫ ∑

+=
=

T

…………….(2.2)

Using (0.3)

∑
=

+=
K

1j
kjkjjk nρbAy ……………………………..(2.3)

where (t)dtn(t)sn
0

kk ∫=
T

……….…………………………(2.4)

Since ρ11=1, (2.3) simplifies to
nology.

Receiv
n conven
r is used
 multi-u
h matche

A). Th
onventio
 exact

ng in ord

∑
≠
=

++=
K

kj
1j

kjkjjkkk nρbAbAy …………………..(2.5)

The 2nd term in (2.5) is the MAI. The matched filter treats the MAI just as
white noise. The noise variance at the output of the matched filter is given
by

Similarly, the noise covariance can be shown to be

ijoji ρN)nE(n = …………………………………..……(2.7)
Hence the noise covariance matrix can be defined as

{ } Rnn oijijo
T NρN]E[== …………………………..(2.8)

where R is given by (0.4) and n=[n1,n2,…,nk]T. Stacking up (2.5) for all
the users we get

Figure 1.2 A matched filter bank

…(2.6)

+

=

K

2

1

K

2

1

2

1

21

212221

11211

K

2

1

n

n
n

b

b
b

A00

0A0
00A

ρρρ

ρρρ
ρρρ

y

y
y

���

�

���

�

�

�

�

���

�

�

�

KKKKK

K

K

 ….......(2.9)

∴ In matrix notation we have,
y=RAb+n………………………………………………(2.10)

Figure 2.2 shows the error rate performance of the bank of matched filters.
The simulation scenario is explained in section 0.3. It is observed that as
the MAI increases (the number of users increases) the performance becomes
poor. This is because the detector ignores the cross-talk between users (the
MAI) as white noise. Good MUDs, as described in the next few sections,
take into the account the correlative property of the cross-talk.

2.1 Limitations of the conventional detector
 Although {y1,y2,…,yk} are sufficient statistics for detecting
{b1,b2,…,bk}, yk is not a sufficient statistic for detecting bk. The
conventional detector makes the mistake of making this assumption (yk is a
sufficient statistic for detecting bk) by ignoring the MAI as background
noise. This is one reason for the poor performance of the matched filter
bank when the number of users is large.
 Another serious limitation of the conventional detector is that it is
seriously affected by the near-far problem. This causes a significant
degradation in the system performance even when the number of users is
very small. This fact will now be illustrated with an example. This example
is a condensed version of a scenario described in [3]. Adapting (2.5) to the
2 user scenario we get,

1122j2111 nρbAbAy ++= ……………………………..(2.11)
It is now obvious that the bit error probability for user 1 is

 −
+

 +
=

o

1221

o

1221
s N

ρAA
Q

N
ρAA

Q
2
1P

1
………(2.12)

The probability of bit error is then readily upper bounded as

 −
≤

o

1221
s N

ρAA
Q

2
1P

1
……………………….………(2.13)

The fact that Q is a monotonically decreasing function was used to get the
upper bound. If the interferer is not dominant i.e., A2ρ12<A1, the bit error
probability is less than half. But if the interferer is dominant (near-far
problem) i.e., A2ρ12>A1, the bound becomes greater than half. Consider
the case when there is no noise in the system (i.e., No=0) and the interferer

is dominant, then (2,13) gives
2
1P

1s = . This is because the polarity of the

matched filter outputs is now governed by b2 rather than b1. Hence we see
that in the absence of noise, though highly hypothetical, the matched filter
receiver reduces to flipping a coin and deciding the output bits. This is an
undesirable feature of the conventional detector (may perform better in the
presence of noise than in the absence of noise).

Figure 1.2 B.E.R performance of the matched filter bank detector
(perfect power control)

2.2 The conventional detector as a front end to MUDs
 The front end of any MUD has a section to convert the continuous-time
received signal to a discrete-time process. This is usually done by sampling
or it can also be done using the matched filter bank. As shown earlier, the
conventional detector takes the received signal y(t) and outputs the statistic
y={y1,y2,…,yk}T. It has been proved [3] that the matched filter bank
sacrifices no information relevant to demodulation. Hence y(t) can be
replaced by y without any loss in system performance. Most MUDs
therefore have the matched filter as the front end.
 With the matched filter front end, the objective of MUD can be stated as
follows:
Given the statistic {y1,y2,…,yk} at the output of the matched filter, find an
estimate for the transmitted bits {b1,b2,…,bk} that minimizes the
probability of error.

SECTION II

The
Decorrelating

Detector

 While concluding Section 2.1 it was noted that the matched filter bank
may decode erroneously even in the absence of background AWGN. This
is not a very attractive property for any receiver. An optimal receiver must
be capable of decoding the bits error-free when the noise power is zero. In
this section the decorrelating detector is investigated. This detector makes
use of the structure of MAI to improve the performance of the matched
filter bank. The decorrelating detector falls into the category of linear
multiuser detectors. This fact will be substantiated as this section
progresses.

2.0 Receiver Operation

As shown in figure 2.1, the decorrelating detector operates by processing
the output of the matched filter bank with the R-1 operator where R is the
cross-correlation matrix as defined in (0.4).

The output of the decorrelating detector is given by

Figure 1.1 Decorrelating Detector

 ()()nRAbRb += −
∧

1sgn ………………………………..(2.1)

 ()nRAb 1sgn −+= …………..…….…………………….(2.2)
When the background noise is absent, i.e., No=0,

()Abb sgn=
∧

……………………………….………………(2.3)

i.e., bb =
∧

 ………………………………………………………(2.4)
 Hence, we observe that in the absence of background noise the
decorrelating detector achieves perfect demodulation unlike the matched
filter bank. One advantage of the decorrelating detector is that it does not
require knowledge of the received signal amplitudes unlike the detector
described in the next section.

 Consider the two user case, with

=

1ρ
ρ1

R , where

ρ is the cross-correlation between the normalized signature waveforms of
user 1 and user 2.
The decoded bits are given by (2.1),

 ()yRb sgn 1−
∧

= …………………………………….……….(2.5)

=

∧

2

1
2 y

y

1ρ-
ρ-1

ρ-1
1sgnb …………………...…….(2.6)

+

−
=

∧

y
ρ-1
1y

ρ-1
ρ-

y
ρ-1
ρy

ρ-1
1

sgn
2212

2212

b …………………….(2.7)

We see that the decorrelating receiver performs only linear operations on
the received statistic y and hence it is indeed a linear detector. The
decorrelating detector is proved to be optimal under 3 different criteria:
least squares, near-far resistance and maximum-likelihood [3].
 As in the previous section the bit error rate plots have been obtained for
the 2 uses and 10 user cases and are shown in figure 2.2. The simulation
scenario is described in section 0.3. Comparing figure 2.2 and figure1.2, we

 see that for the 10 user case, as the SNR increases, the performance of the
decorrelating detector is better. Again, in the simulations, perfect power
control was assumed. Figure 3.4, figure 3.5 and figure 3.6 show a
comparison of the performance of the matched filter bank and the
decorrelating detector. It is observed that at low SNRs the matched filter
performs better. Hence, the decorrelating detector is not an optimal (in
terms of B.E.R) detector.

Figure 2.2 B.E.R performance of the decorrelating detector.

SECTION III

The
MMSE Linear

Detector

 In section II we noted that the only information required by the
decorrelating detector was the cross-correlation matrix R of the spreading
sequences. At low SNRs, the matched filter bank performs better than the
decorrelating detector as observed from figure 3.6. Hence, it might be
possible to improve the performance by incorporating some SNR
information in the MUD algorithms. In this section, one such approach is
investigated where the mean squared error between the output and data is
minimized. The detector resulting from the MMSE (minimum mean square
error) criterion is a linear detector.
 Two different adaptive approaches of the MMSE linear detector are also
studied at the end of this section. One of the approaches requires no prior
information of the SNRs or the signature waveforms but requires a training
sequence to adapt and compute the optimum weights to be applied on the
received statistic. The other approach does not need a training sequence
but requires exact knowledge of the signature sequence.

3.0 Receiver Operation
 Being a linear detector like the decorrelating detector, the MMSE
receiver also weights the received statistic y with a weight vector w to form
the decision statistic. The receiver structure for user m is shown in figure
3.1.

Figure 3.1 MMSE linear transformation for user m

It has been proved that minimizing the MSE at the output of the linear
transformation is equivalent to maximizing the SIR at the output of the
linear transformation [3]. The optimal value of the [w1,w2,…wk] that

minimizes the MSE between the weighted received statistic and the
transmitted bit is derived in the next section.

3.0.1 Optimal Weights for an MMSE Linear Detector in

an AWGN Channel

 The MMSE linear detector for user 1 determines a waveform c1(t) such
that the MSE error between the transmitted bit and the correlation between
c1(t) and the received signal y(t) is minimized. The objective function (the
mean square error in this case) is defined as

(){ }2
 1 y,1cbEc1)(−=Ψ …………………………………………(3.1)

In the finite dimensional representation (3.1) can be expressed as

 −=Ψ ∑
=

2K

1i
ii 1K21 ywbE)w,...,w,w(…………………….(3.2)

Where {w1, w2, … , wK} are the weights operating on the received statistic
{ y1, y2,…, yK}.
Representing (3.2) in a compact and convenient matrix notation,

(){ }2T
 1bE)(yww −=Ψ ……………………………………………(3.3)

Using linearity of the Expectation operator,

() () ()(){ }TTTT
1

2
1 E2bEbE)(ywywyww +−=Ψ ……………….(3.4)

Since the bits of user 1 are i.i.d, () 1bE 2

1 = . Therefore,

() { }wyywyww TT
1

T EbE21)(+−=Ψ …………………………(3.5)

() { }wyywyw TT
1

T EbE21 +−= …………………………(3.6)
From (2.10), we have
 nRAby += ……………………………….………………………(3.7)

Consider, () ()nRAby 111 bbEbE += ………………………...…(3.8)

 ()nRA 1

K

2

1

1 bE

b

b
b

bE +

=
�

…………………………(3.9)

()
()

()

()nRA Eb

bbE

bbE
bE

1

K1

21

2
1

+

=
�

………………………….(3.10)

Since the bits of user 1 are i.i.d and are uncorrelated with the bits of other
users we have,

()

=
≠

=
 ji, 1
ji, 0

bbE K1 ……………………………….(3.11)

Using (3.11) and the fact that the noise n is zero mean i.e.,E(n)=0 in
(3.10),

() []T0 0 0 1bE 1 �RAy = ……………………………….…(3.12)

Using the definition of A and R from (0.4)and (2.9),

()

=

0

0
1

A00

0A0
00A

ρρρ

ρρρ
ρρρ

bE 2

1

21

212221

11211

1
��

�

���

�

�

�

�

���

�

�

KKKKK

K

K

y ..(3.13)

()

=∴

11K

121

111

1

Aρ

Aρ
Aρ

bE
�

y ……………………………………(3.14)

Now consider the second expectation term in (3.6),

{ } ()(){ } ()TTT EEE nnRAbRAbyy += [using (3.7)]………(3.15)

{ } RRARAbb o
TTT NE += [using (1.3)]……..(3.16)

Using the fact that A and R are symmetric matrices, we get
{ } { } RARbbRAyy o

TT NE E += …………………..………….(3.17)

RRRA o
2 N += …………………………….………….(3.18)

Substituting (3.14) and (3.18) in (3.6),

[]
()wRRRAw

ww
 N

Aρ Aρ Aρ21)(

o
2T

T
1K121111

T

++

−=Ψ �

 …(3.19)

Equation (3.19) gives the objective function (MSE) that should be
minimized according to the MMSE criterion. Performing a matrix
derivative operation on (3.19) we get,

[]
()wRRRA

ww

 N2

 Aρ Aρ Aρ2)(

o
2

T
1K121111

++

−=Ψ∇ �

………..(3.20)

We used the fact that () No
2 RRRA + is a symmetric matrix to get

(3.20). The optimum weights that minimize the MSE can be obtained by
equating)(wwΨ∇ to zero. Hence,

[] () 0 N2 Aρ Aρ Aρ2 opto
2T

1K121111 =++− wRRRA�
….(3.21)

Solving (3.21) the optimal weights are obtained as

() [] T
11K121111

1
o

2
opt Aρ Aρ AρN �

−+= RRRAw ……...(3.22)

To calculate the optimal weights for user m, just replace i1ρ by m iρ for all i
and replace A1 by Am in (3.22). (3.22) can be written in a more general
and compact form as

() 12
oopt N −−+= ARw ………………………………………..….(3.23)

where

= 2
K

o
2
2

o
2
1

o2-
o A

N
,...,

A
N

,
A
N

N diagA ……………………….(3.24)

(3.23) explains the operation of the receiver. The receiver just weights the
received statistic with optw and makes a decision as shown in figure 3.1.
This leads to the receiver architecture shown in figure 3.2.

Figure 3.2 MMSE linear detector

It is shown in [3] that the MMSE receiver maximizes the SIR at the output
of the transformation shown in the above figure. Figure 3.3 shows the
performance of the MMSE linear detector in an AWGN channel. The
simulation scenario is identical to the one used in the previous sections. For
the sake of comparison the bit error rates of the detectors described so far
have been plotted in figures 3.4, 3.5 and 3.6.

Figure 3.3 B.E.R performance of the MMSE linear detector

3.1 Adaptive Implementations
 As seen in sections II and II, the implementations of the decorrelating
detector and the MMSE linear detector involves matrix inversion
operations. If the number of users become large the size of the matrix to be
inverted grows and hence the computation time of such a matrix inversion
becomes unacceptable. For the decorrelating detector R-1 can be pre-
computed and stored. However for an asynchronous system, R is time
varying and hence such pre-computation will not work. The MMSE

detector requires the SNR information and hence again precomputation of
the matrix inverse is not a feasible solution. Also, getting good estimates of
the SNR is not temporally efficient. Therefore, it would be nice if there was
some way to eliminate the need to compute matrix inverses and the need to
have apriori information (signature sequences) and other additional
information (SNR) for decoding. This objective can be realized through
adaptive MUD algorithms. Adaptive algorithms “learn” the desired filter
response from the received signals. There are different approaches to
implement the “learning” capability. Two approaches will be studied in the
next sub-sections. The first approach does not any apriori knowledge but
calls for a training sequence. The second approach does not require any
training sequence but requires exact knowledge of the signature sequences
of the users and also takes longer to converge.

Figure 3.4.BER plots for the detectors described in section I ,II and III (2 user case)

Figure 3.5 BER plots for the detectors described in section I ,II and III (10 user case)

Fig 3.6 A zoomed version of the BER plot of the figure 3.4 showing the

performance of the linear detectors at low SNRs

3.1.1 Adaptive MMSE Linear Detection (LMS Algorithm)
 Before the LMS (least mean square) algorithm is described, a brief
review of the gradient descent optimization algorithm is presented. A more
detailed presentation of this algorithm can be found in [3,4]
 The gradient descent algorithm is used for the optimization of convex
penalty functions. Consider the optimization of the following convex
penalty function :

u)]E[g(X,)u(=Ψ ……………………………………….(3.25)
where E is the expectation operator , X is a random variable and u is the
parameter to be optimized (X and u could be vectors). If ψ is convex, then
according to the gradient descent algorithm, it is possible to converge to the
minimum valuse of ψ by starting at any point uo and following the
direction opposite to the gradient ∇ψ (steepest descent). The update rule is
then given by

()jj1j uµ-uu Ψ∇=+ , where µ is the step size…..…….(3.26)

 However, if the distribution of X is not known then neither the penalty
function given by (3.25) nor its gradient can be computed. But if a number
of independent observations of X are available then it would be possible to
get an estimate of the distribution of X and calculate the gradient of the
penalty function and use the update rule given in (3.26). Therefore, at each
iteration we could replace the gradient of the penalty function,
∇ψ =E[∇ g(X,u)] by its approximate value ∇ g(Xj+1,u). This is called
the stochastic gradient descent algorithm. The update rule for the stochastic
gradient is thus modified as

()j1jj1j u,Xgµ-uu ++ ∇= …………………….……..(3.27)
 If the step size is infinitesimally small, then the deviations on either side
of the mean tend to cancel out and the trajectory of the stochastic descent
will almost follow the steepest descent trajectory. For the special case of
quadratic cost functions, the stochastic descent algorithim is also known as
the least mean square (LMS) algorithm.
 For the case of MMSE multiuser detection in CDMA systems, the
convex penalty function is given by (3.3) . Hence

()2T
 1b),(g ywwX −= , where X=(b1, w)………...(3.28)

Differentiating w.r.t w, ()yywwX b2),(g T
 1 −−=∇ ………….(3.29)

Since Xj=(b1[j], y[j]), the update rule in (3.27) becomes

()]j[]j[b-[j]]1-j[µ-]1-j[]j[1
T yywww = …….(3.30)

 It is seen that we need to know the data bits b1 in order to implement the
LMS algorithm. This requirement is handled by sending a training sequence
at the beginning of each transmission. Once the training sequence has been
sent, the adaptive algorithm can be allowed to run with the decisions made
by the detector instead of the true transmitted data. This mode of operation
is called decision directed operation.This might fine tune the weights if the
SNR is high enough. However if the SNR is very low, the decisions of the
detector are not reliable enough and may cause the weight to change
drastically from the optimal value. In the simulation results presented in
this report, the decision directed mode was not used. Once the training bits
are sent, the weights were not changed.
 The longer the training sequence, the closer are the computed weights to
the optimal value given by (3.23). The training bits however are a overhead
and the number of training bits needs to be as small as possible in order to
maintain system efficiency. Hence there is a tradeoff between efficiency
and error performance that needs to be considered when deteremining the
number of training bits that needs to be used in a system. This is observed
by comparing figure 3.7 and figure 3.9 which show that the weights w1 and
w2 (in the 2 user case) do not converge to the optimal value with just 1000
training bits. However when 5000 training bits are sent, the weight vectors
were closer to the optimal value (as observed from the MSE curve, figures
3.8 and 3.10). The simulations were run with an SNR of 10dB and the
optimal values required to calculate the MSE were obtained from (3.23).
 Apart from the number of training bits another important parameter that
affects the performance and convergence speed of the the LMS algorithm is
the step size. A larger step size makes the algorithm converge faster but has
a higher ripple around the optimal value. This can be observed by
comparing figures 3.9and 3.13 and also figures 3.10 and 3.14.

Figure 3.7 Weight vector convergence for 1000 training bits

Figure 3.9 Weight vector convergence for 5000 training bits

 Figure 3.10 MSE variation for 5000 training bits Figure 3.8 MSE variation for 1000 training bits

Performance of the LMS linear detector
with a step size µ=0.001

Figure 3.11 Weight vector convergence for 1000 training bits

Figure 3.13 Weight vector convergence for 5000 training bits

 Figure 3.12 : MSE variation for 1000 training bits Figure 3.14 : MSE variation for 5000 training bits

Performance of the LMS linear detector
with a step size µ=0.01

Observing figure 3.7 and figure 3.11 we see that with a larger step size, the
weights converge to the optimal value with a smaller number of training
bits but at the cost of a higher residual error (weights do not converge to
optimal value with a step size of 0.001 and 1000 training bits but if the step
size is increased to 0.01, the weight vectors converge around the optimal
value with just 1000 bits). Conversely, a smaller step size takes longer to
converge(requires more training bits) .
 From the above discussion, it is clear that it would be nice to
progressively decrease the step size as the LMS algorithm proceeds. A high
value of step size should be used initially to cause fast convergence of the
the algorithm and then in the latter iterations a smaller step size should be
used to minimize the ripple around the optimal value (residual error). But
great care should be excercised in using adaptive step sizes. Sometimes the
step size may become really small as the algorithm progresses and the
weights may never converge to the optimal value. One method of
progressively shrinking the step size is to multiply a fixed step size by γi
where i is the iteration number and γ is a number just smaller than 1. Hence
the update rule is given by

 ()]j[]j[b-[j]]1-j[µ-]1-j[]j[1
Ti yywww γ= …………(3.31)

The convergence of the weights with this adaptive step size is shown in
figure 3.15. In the simulations, γ =0.995 and µ=0.01. We can see that the
step size becomes very small as the algorithm progresses and the weights do
not converge. Hence, this is not a suitable strategy for varying the step size
in this case.
 Another method of progressively decreasing the step size is to have a
step size of the form 1/i, where i is the iteration number. Hence the update
rule is modified as

()]j[]j[b-[j]]1-j[
i
1-]1-j[]j[1

T yywww = ……………(3.32)

 The convergence plots for this step size is given in Figure (3.16). Also
plotted are convergence plots with a fixed step size of 0.01 for comparison.
We see that this method of varying the step size converges very fast to the
vicinit of the optimal value. For the a step size of the form 1/i it has been
proved [3] that the update rule given in (3.32) will always converge to the
optimum value.
 If the channel changes often, then training bits need to be sent
periodically. The choice of step size, whether it should be fixed or
stationary, depends on the application, channel and other cost factors.
 Since, the detector requires no knowledge of the signature sequence, why

Figure 3.16 Weight vector convergence for the update rule in (3.32) Figure 3.15 Weight vector convergence for the update rule in (3.31)

doesn’t the detector converge to some other users MMSE detector (say the
user with the strongest power)? This is because of the training sequence
which governs the desired users LMS algorithm. Hence, each user should
have a different training sequence. Hence, we see that the LMS MUD is
not limited by the near far problem.

3.1.2 Blind Adaptive Multiuser Detection
 The convergence of the LMS algorithm rests on the fact that the
received amplitudes, cross-correlations and channel conditions remain
constant. If any of these parameters change suddenly (a strong interfere is
powered on or the channel suddenly goes into a deep fade), then in the
decision directed mode of operation the weights may not converge because
the detector starts making faulty decisions or in the fixed mode of operation
the weights are no longer optimal. This calls for the training sequence to be
sent again. Thus, the detector needs to be able to detect sudden changes in
the system environment and request for the training sequence to be sent
again. This is a cumbersome procedure requiring a lot of overhead. Hence,
it is desirable to have an adaptive algorithm that operates without having to
know the data. Algorithms that operate without knowledge of the channel
input are known as blind algorithms (the algorithm is blind to the data).
Blind adaptive multiuser detection was first introduced by Honig et al in
1995 [5]. Before the blind MUD algorithm is presented the canonical
representation of linear multiuser detection introduced in [5] is discussed.
 The blind MUD approach is based on decomposing the linear MUD
filter response into two orthogonal components. One of the components is
equal to the signature waveform of the desired user. Consider the linear
detector of user 1 which is characterized by the filter response c1,

)cy,sgn(b 11 ><=
∧

………………………………....(3.33)
The canonical representation of c1 is

c1= s1+ x1……………………………………………(3.34)
where <s1, x1>=0….………………………………………………(3.35)

s1 in (3.34) and (3.35) is the signature waveform of user 1. Therefore,
according to the canonical representation every linear MUD is characterized
by its orthogonal signal x1 (since s1 is assumed to be known). Given a
linear transformation d1 the orthogonal component is given by

11
11

1 sd
d,s

1x −
><

= …………………………………..(3.36)

This can be verified by applying (3.35) to (3.36). Using (3.34) in (3.33) we
have,

)xsy,sgn(b 111 >+<=
∧

 ……………………………..….(3.37)
Using the definition of y from (0.1)

()
~

1

K

2k
1k1kkk111 nx,sρbAbsgn(Ab +><++= ∑

=

∧
……(3.38)

Just as done in section 3.0.1, it can be proved that

2
~

2
1 x1n E +=

………………………………………………..(3.39)

The variance at the output of the linear transformation in (3.37) is given as
{ }2

11)xsy,(E >+< ……………………………………………(3.40)
This is also referred to as the output energy in literature. Using the
definition of <y,s1+x1> in (3.40) we can express the output energy as

……………………..(3.41)

We have used the fact that the bits of user 1 are uncorrelated with the bits of
the other users and the noise. The first term in (3.41) is the signal energy
and the two other terms represent the interference energy (MAI + noise).
Due to the canonical representation we can see that the signal energy is
transparent to the choice of x1. We can intuitively see that choosing x1to
minimize the output energy would be a sensible idea since this would just
minimize the interference energy. This type of detector is referred to as the
minimum output energy (MOE) detector. Denote the minimum output
energy as

{ }2
111)xsy,(E)x(MOE >+<= ……………………….(3.42)

From section 3.01, the minimum MSE is given by
{ }2

11111)xsy,-b(AE)x(MSE >+<= ……………….(3.43)

i.e., () ()2
o

2K

2k
1k1k

2
k1 x1Nx,sρA)MSE(x ++><+=∑

=

….(3.44)

=> 2
111 A)MOE(x)MSE(x −= (using (3.41)) ………………(3.45)

∴ We can see that the MSE and MOE differ only by a constant (thanks to
the canonical representation). Hence, the arguments that minimize both the
functions are the same. This is a crucial observation from the point of view
of the adaptive implementation. It tells us that if we try to minimize the
MOE (same as minimizing the MSE), we do not need any training sequence
to implement the gradient descent algorithm (since the MOE does not
depend on the data). Hence we end up with an adaptive MMSE detector
without the need for any training sequence. This is the basis for the blind
adaptive multiuser detector.
 The steepest descent algorithm (described in the previous subsection) is
again used to derive the update rule for the adaptive algorithm. We just
need to update the orthogonal component to s1 since we are trying to obtain
the minimum of the MOE by changing just x1. Therefore we just need to
follow the steepest descent in the direction orthogonal to s1. To do this we
just take the gradient of the MOE and project it on the subspace orthogonal
to s1. The gradient of the MOE given in (3.42) is

yxsy,2)x(MOE 111 >+<=∇ ………………..……………..(3.46)
The component orthogonal to s1 is y- <y,s1> s1. Using this in (3.46) we
get the gradient projected onto a subspace orthogonal to s1 as

2< y,s1+x1>[y- <y,s1> s1]…………………..……….(3.47)
The adaptive algorithm update is done once every T seconds, where T is the
bit period. The received waveform is slotted into waveforms of duration T,

...y[i-1], y[i], y[i+1]…

Define, ><=
∆

1MF sy[i],]i[Z …………………..……….…….…(3.48)

>−+<=
∆

1][ixsy[i],]i[Z 11 ……………………….(3.49)
Using (3.49) and (3.48) in (3.47) and using the update rule in (3.27), the
update rule for the blind adaptive MUD is given by

()1MF11 [i]sZy[i]µ Z[i]1][ix[i]x −−−= …………(3.50)

Finite precision implementation of the above update rule can have effects
that are not immediately visible but that have a cumulative effect. It may
happen that finite precision round off errors drive the updates of x1 to be
outside the orthogonal space. This is shown in figure 3.17 for two different
values of step sizes. The simulations were run with 2 users and perfect
power control. On the y axis, a measure of the orthogonality between x1and
s1 (<x1, s1>) is plotted for each iteration. Though <x1, s1> is small, we
can see that the value keeps increasing implying that x1 keeps falling more
and more outside the orthogonal subspace.

Figure 3.17 Finite precision implementation errors in the blind update rule

 This problem can be solved by replacing the update x1 by its orthogonal
projection:

x1[i]- <x1[i], s1[i]> s1...(3.51)
Figure 3.18 plots the orthogonality between x1and s1 after replacing x1 by
its orthogonal projection. We now observe that the value of <x1, s1>
oscillates around the same value.

Figure 3.18 Effect of the substitution in (3.51) on finite precision errors

It was observed earlier that the first term in (3.41) represented the signal
energy and the second term in (3.42) represents the interference energy.
Therefore, the signal to interference ratio for user 1 can be written as

() ()2
o

2K

2k
1k1k

2
k

2
1

x1Nx,sρA

A
SIR

++><+
=

∑
=

……(3.52)

 It can be inferred from looking at (3.41) that minimizing the output
energy is the same as minimizing the denominator of (3.52). Therefore just
like the MMSE detector the MOE detector also maximizes the output SIR
(another way to prove that the two detectors are equivalent). Figure 3.19
shows how the SIR increases with each iteration (the SNR was 10dB with
10 users in the system).
 Figure 3.20 shows the convergence of one of the components of x1. By
looking at the convergence plots of the LMS detector we observe that the
blind detector takes a lot longer converge.

Figure 3.19 SIR at each iteration of the blind MUD algorithm

 Figure 3.20 Convergence of 1 componant of x1

 It is not really fair to compare the LMS and blind detectors in terms of
the bit error rate because the performance depends on how long the
algorithm is allowed to converge(also the two algorithms do not behave the
same way for the same step size). Once the algorithms converge, the error
performance should ideally be that of the MMSE linear detector. But to give
a rough idea, the BER error rates for the 2 user case are plotted in Figure
3.21. The LMS algorithm was given 1000 training bits and had a step size
of 0.01. The blind detector had a step size of 0.005. Hence, the comparison
is not really a good one, however it seen that the performance is almost the
same.

Figure 3.21 BER performance of the MMSE,LMS and blind detectors

CONCLUDING REMARKS
 This report is a compilation of different approaches to linear multiuser
detection. The requirement of this technology was motivated by studying
the conventional detector. The matched filter bank just ignores the
correlative structure of the MAI present in CDMA systems. Further, it was
also shown that in the absence of noise, the conventional detector is a
totally unreliable detector. This called for the need for better detectors.
 The decorrelating detector was then introduced which takes the
conventional detector one step further by incorporating the correlative
structure of the MAI in the detection. However, it was noted that at low
SNRs the conventional detector performed better than the decorrelating
detector. This implied that the decorrelating detector could be improved
upon.
 The MMSE linear detector was then shown to take the decorrelating
detector one step further by incorporating some SNR information along
with the correlative structure of MAI. Thus, the performance was better
than the decorrelating detector at low SNRs. It must also be noted that
when the background noise is totally absent (infinite SNR), the MMSE

operator () 12
oN −−+ AR reduces to () 1−R , which the decorrelating

operator. Hence the decorrelating detector can be thought of as an
asymptotic instance of the MMSE linear detector. However, the
implementation of the MMSE linear detector required knowledge of
received signal amplitudes (to calculate the SNR) apart from the correlation
matrix and timing information (required by the decorrelating detector).
 Two different adaptive approaches to linear MMSE detection that operate
without knowledge of received amplitudes was then discussed. The LMS
detector required no knowledge of the signature sequences but called for
training sequences. The blind detector required only the same knowledge
as required by the conventional detector, the signature sequences and the
timing. The convergence properties of the two adaptive algorithms were
also studied. When compared to the LMS algorithm the blind algorithm
takes a very long time to converge.
 The choice of the MUD algorithm depends on a lot of factors like the
application, channel information available, availability of training
sequences, complexity cost and overhead involved. To pick one out which
is the optimal one or the best one is not an easy task!

APPENDIX A : The 10 gold codes used in the simulations

User Code
1
2
3
4
5
6
7
8
9

10

1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0
1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0
0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1
0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1
0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1
0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1
1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1
0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0
0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1
0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1

The codes must be converted to 1s and -1s and then normalized to have unit
energy before they can be used in the simulations.

APPENDIX B: The MATLAB codes used in the simulations.

%%
%code for generating the m-sequence of length 31%%
%%
clear all;
clc;
%%%%%% enter tap weights as an array h=[h1,h2,..h6]
%%%%%%%%%%%
%h=[0 0 0 0 1 1];% 103 ---this is the primitive polynomial <103>
%h=[1 0 0 1 1 1];%147
h=[1 1 1 0 1];%75
%h=[0 0 1 0 1];%45
%h=[1 1 0 0 1 1];%163
%h=[1 0 0 0 0 1];%141
%%%%%% enter intial state of the register as an array u=[u1 u2 u3 u4 u5
u6] %%%%%%%%%%%
%fid=fopen('/home/users/arun/sscdma/project/mseq31_primploy45.txt','a');
for i=1:31
 u=dec2bin(i,5);
 u=u-48;
 u(6)=0;
 output=[];

 for shift=1:31
 output=[output,u(1)];
 temp=u(1);
 for n=2:6
 u(n-1)=xor(u(n),(h(n-1)*temp));
 end
 %u(1:6)
 end
 %output
 t=[output,output];
 if t(1,2:31)==t(1,2*(2:31)-1)
 charphase=output;
 end
 end

save mseq31primpoly75.mat charphase;
u=charphase;

%%
%%%%%%code for generating the gold codes%%%%%%%%%%%%%%%%
%%
clear all;
clc;
N=31%pn code length
num_users=10;

load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
u(1,:)=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
u(2,:)=charphase;
fid=fopen('/home/users/arun/sscdma/project/codes.txt','a
+');
%shift and add
for j=1:num_users-2

u(j+2,:)=xor(u(1,:),u(2,[j+1:end 1:j]));
end
for i=1:num_users

for j=1:N
fprintf(fid,'%d ',u(i,j));

end
fprintf(fid,'\n');

end
fclose(fid);

%convert to ones and minus 1's
u=2*u-ones(num_users,N);
u=u/sqrt(31);%normalize the auto-correlation

%calculate the cross-correlation matrix
for i=1:10

for j=1:10
R(i,j)=sum(u(i,:).*u(j,:));

end
end
save '/home/users/arun/sscdma/project/10goldcodes.mat'…

u R;

%%

%%%%code for generating the matched filter (2 users) %%%%%%%%%%
%%
clear all;
clc;
N=31;
K=2;%%%%no of users
No=0.6;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=1000;
%%%%get signature sequences
load '/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load '/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;
%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));

A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=sign(R*A*b + n);
%convert to ones and
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits

%%
%%%%%%code for the matched filter bank(2 users)%%%%%
%%
clear all;
clc;
N=31;
K=10;%%%%no of users
No=0.02;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=100000;
%%%%get signature sequences
%load '/home/users/arun/sscdma/project/mseq31primpoly45.mat'
%a1=charphase;
%load '/home/users/arun/sscdma/project/mseq31primpoly75.mat'
%a2=charphase;
%%%%%%%generate the anitpodal sequence
%a1=2*a1-1;
%a2=2*a2-1;
%%%%%%%normalize energy of signature waveforms
%a1=a1/sqrt(sum(a1.*a1));
%a2=a2/sqrt(sum(a2.*a2));

A=eye(K);
load '/home/users/arun/sscdma/project/10goldcodes.mat'

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=sign(R*A*b + n);
%convert to ones and
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits
avg_ber=0.5*(ber1+ber2)
ber=sum(sum(xor(bits(1:K,:),b_hat(1:K,:)))/no_of_bits)/K

%%
%%%%%%code for the decorrelating detector (2 users)%%%%%
%%
clear all;
clc;
N=31;
K=2;%%%%no of users
No=0.03;
Nodb=10*log10(1/No)
no_of_bits=100000;
%%%%get signature sequences
load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;
%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));
A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];
bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);
y=sign(inv(R)*(R*A*b + n));
%convert to ones and -1s
b_hat=(y+ones(K,no_of_bits))/2;
%get the b.e.r as the average of the 2 users
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%
%%%%%code for the decorrelating detector (10 users)%%%%%
%%
clear all;
clc;
N=31;

K=10;%%%%no of users
No=0.02;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=10000;
A=eye(K);
%get codes and R
load '/home/users/arun/sscdma/project/10goldcodes.mat'

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=sign(inv(R)*(R*A*b + n));
%convert to ones and
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%
%%%%%code for the MMSE linear detector (2 users)%%%%%
%%
clear all;
clc;
N=31;
K=2;%%%%no of users
No=0.1;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=1000;
%%%%get signature sequences
load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;

%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));

A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];
novector(1:K)=No;
sigma2Aminus2=diag(novector);

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=sign(inv(R+sigma2Aminus2)*(R*A*b + n));
%convert to ones and minu ones
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%
%%%%%code for the MMSE linear detector (10 users)%%%%%%%
%%

clear all;
clc;
N=31;
K=10;%%%%no of users
No=0.02;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=10000;
%%%%get signature sequences
A=eye(K);
load '/home/users/arun/sscdma/project/10goldcodes.mat'

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);
novector(1:K)=No;
sigma2Aminus2=diag(novector);

y=sign(inv(R+sigma2Aminus2)*(R*A*b + n));
%convert to ones and
b_hat=(y+ones(K,no_of_bits))/2;

ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits;
ber2=sum(xor(bits(2,:),b_hat(2,:)))/no_of_bits;
avg_ber=0.5*(ber1+ber2)

%%
%%%%%code for the LMS algorithm (2 users)%%%%%
%%
clear all;
clc;
mu=0.01;
N=31;
K=2;%%%%no of users
No=0.08;
Nodb=10*log10(1/No)
%No=N*No;
no_of_bits=100000;
%%%%get signature sequences
load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
a1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
a2=charphase;
%%%%%%%generate the anitpodal sequence
a1=2*a1-1;
a2=2*a2-1;

%%%%%%%normalize energy of signature waveforms
a1=a1/sqrt(sum(a1.*a1));
a2=a2/sqrt(sum(a2.*a2));

A=[1 0;0 1];
rho=sum(a1.*a2);
R=[1 rho;rho,1];

bits=round(rand(K,no_of_bits));
b=2*bits-1;
n=sqrt(No)*randn(K,no_of_bits);

y=(R*A*b + n);
%%%%%%%%%%%theoretical optimum weights
Wopt=inv(R*A*A*R+No*R)*[1;rho];

c1=[1,1]';
mean_squared_error(1)=sum((Wopt-c1).^2)/K;
c1=c1-mu*(c1'*y(:,1)-b(1,1))*y(:,1);
w1(1)=c1(1,1);
w2(1)=c1(2,1);

for i=2:no_of_bits
%c1=c1-mu*(0.995)^(i-1)*(c1'*y(:,i)-b(1,i))*y(:,i);

%%%variable step size
c1=c1-mu*(c1'*y(:,i)-b(1,i))*y(:,i);%%%%fixed step

size
w1(i)=c1(1,1);
w2(i)=c1(2,1);
mean_squared_error(i)=sum((Wopt-c1).^2)/K;

end
Wopt
bits_hat=sign(c1(1)*y(1,:)+c1(2)*y(2,:));
b_hat=(bits_hat+ones(1,no_of_bits))/2;
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits
figure(3);
subplot(2,1,1);
plot(w1);
subplot(2,1,2);
plot(w2)
figure(4)
plot(mean_squared_error);

%%
%%%%%%%%%%%%code for the blind MUD algo. (2 users)%%%%%%
%%
clear all;
clc;
mu=0.0005;
N=31;
K=2;%%%%no of users
No=0.1;
Nodb=10*log10(1/No)
no_of_bits=50000;
%%%%get signature sequences

load
'/home/users/arun/sscdma/project/mseq31primpoly45.mat'
s1=charphase;
load
'/home/users/arun/sscdma/project/mseq31primpoly75.mat'
s2=charphase;
%%%%%%%generate the anitpodal sequence
s1=2*s1-1;
s2=2*s2-1;
%%%%%%%normalize energy of signature waveforms
s1=s1/sqrt(sum(s1.*s1));
s2=s2/sqrt(sum(s2.*s2));

bits=round(rand(K,no_of_bits));
b=2*bits-1;

n=sqrt(No)*randn(K,no_of_bits);
x1(1,1:N)=0;
for i=1:no_of_bits

transmitted_bits=b(1,i)*s1+b(2,i)*s2;
y=transmitted_bits+sqrt(No)*randn(1,N);%%received

%%statistic
zmf=sum(y.*s1);
z=sum(y.*(s1+x1(i,:)));
x1(i+1,:)=x1(i,:)-mu*z*(y-zmf*s1);
x1(i+1,:)=x1(i+1,:)-sum(s1.*x1(i+1,:))*s1;%replace by

%the orthogonal projection
%orth(i)=sum(s1.*x1(i+1,:));
b_hat(i)=sign(z);

sir(i)=1/(No*(1+sum(x1(i+1,:).*x1(i+1,:)))+(sum((s1+x1(i
+1,:)).*s2))^2);

end
b_hat=(b_hat+ones(1,no_of_bits))/2;
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits

%%
%%%%%%%%%%%%code for the blind MUD algo. (10 users)%%%%%
%%
clear all;
clc;
mu=0.005;
N=31;
K=10;%%%%no of users
No=0.1;

Nodb=10*log10(1/No)
no_of_bits=1000;
load 10goldcodes.mat
bits=round(rand(K,no_of_bits));
b=2*bits-1;

n=sqrt(No)*randn(K,no_of_bits);
x1(1,1:N)=0;
for i=1:no_of_bits

transmitted_bits=zeros(1,N);
for k=1:10

transmitted_bits=b(k,i)*u(k,:)+transmitted_bits;
end
y=transmitted_bits+sqrt(No)*randn(1,N);%%received

statistic
s1=u(1,:);
zmf=sum(y.*s1);
z=sum(y.*(s1+x1(i,:)));
x1(i+1,:)=x1(i,:)-mu*z*(y-zmf*s1);
x1(i+1,:)=x1(i+1,:)-sum(s1.*x1(i+1,:))*s1;%replace by

the orthogonal projection
orth(i)=sum(s1.*x1(i+1,:));
b_hat(i)=sign(z);
mai=0;
for k=2:10

mai=mai+sum((s1+x1(i+1,:)).*u(k,:));
end
sir(i)=1/(No*(1+sum(x1(i+1,:)))+mai)^2;

end
b_hat=(b_hat+ones(1,no_of_bits))/2;
ber1=sum(xor(bits(1,:),b_hat(1,:)))/no_of_bits

REFERENCES:

[1] R.L.Peterson, R.E.Ziemer and D.E.Borth, Introduction to Spread
 Spectrum Communications, Prentice Hall, Inc., 1995.

[2] Tan F. Wong, Spread Spectrum and CDMA :Class notes, Fall 2001.

[3] S. Verdu, Multiuser Detection, Cambridge University Press, 1998.

[4] J.G. Proakis, Digital Communications, 3rd Ed., McGraw-Hill, Inc., 1995.

[5] M. Honig, U. Madhow, and S. Verdu, ``Blind Adaptive Multiuser
 Detection,'' IEEE Trans. Inform. Theory, vol. 41, pp. 944-960, Jul. 1995.

ACKNOWLEDGEMENTS
I would like to thank Dr.Tan F. Wong for useful discussions that directed
my simulations and helped me understand the material presented in this
report. I would also like to thank my friend Yadu Rao for helping with the
matrix calculus involved in section III.

	SECTION 0
	Introduction
	SECTION I
	SECTION II
	SECTION III

