APPENDIX A

This appendix gives the proofs of the equations given in Chapter 3.

» Proof of Eqn (3.3)
Wk = Z Wi ik
i
From Eqn (3.1) ,we have
Wk = PI‘{Wi:k}

= Z Pr{W, =k, W, =3} as dependence between delays is
i Markovian

= Pr{W, =k /W, = j}Pr{W,, = j} writing the above expn. in terms
j of conditional probabilities

= qukwj usil’lg (31) and (32)
i

» Proof of Eqn(3.6)

fuk) = > wiq{h,

i20

From the following figure we see that U;+d=W;+d-Wy; = U;=W-W,




Similarly from Fig.3.1, we see that U,=W,-W,

Eqgn (3.5) gives, fu(k) =Pr{U,=k}

Using the expression for U, derived above : (k) =Pr{W, -Wy=k}
=Pr{W,=k+Wy}

writing this in terms of the joint f, (k)= Z:Pr{Wn =k+W,,W, =i}
probability we get 20
e f,(k) = Pr{W, =k + W,/ W, =i}Pr{W, =i}
J
e f,(k) = Pr{W, =k +i/ W, =i}Pr{W, =i}
J
using (3.1) and (3.2) f (k)= Z w,q,
J

where, qi‘}) is the i-j component of the nth power of the transition matrix, qj, .

» Proof of Eqn (3.10)
. oy (AD)"
QG.k) —EPH (k)= e
Eqn (3.7) gives the definition of Q(j.k) i.e, Q@,k) = Pr{W>k/Wi.=j}

writing this in terms of the joint probability we get

QG,k) = Z Pr{W. >k, n Poisson arrivalsin ((i-1)d,id )/ W, = j}

The following sets of equations are obtained using the relation between joint
probability and conditional probability.

Z Pr{W, >k, n Poisson arrivalsin ((i-1)d,id), W,, = j}
QG,k) =

PriW,, =j}

Z:Pr{Wi >k/W,, = j,n Poisson arrivalsin ( (i-1)d,id )} Pr{ n Poisson arrivalsin ((i-1)d,id),W,, = j}

PriW, =j}

= Z:Pr{Wi >k/W,, = j,n Poisson arrivalsin ((i-1)d,id )} Pr{ n Poisson arrivalsin ((i-1)d,id )/W,, = j}



Using Eqn (3.8) and the fact that the Poisson arrivals is independent of the delay of the
i-1"™ cell we have

L1y = o (Ad)"
Q(J,k)—;Pn(J,k)Te
» Proof of Eqn (3.11)
0 forg+1=2d andn<d+k-j-1)or(j+1<dandn <k)
n—k n s s+k S n—s—kd_n+k
P (§,k) = — 1-— —— forj+l<d andk<n<d+k-j-1
00 ;{wkIdJ ( dj i-s :
1 forn>d+k-j-1

As explained in Sec3.1, since the service discipline is assumed to be FIFO, W; is identical
to the queue length L; , as seen by the i periodic cell.

Consider the following scenario:

In between arrival of two CBR cells ( (i-1)d ,id) there are d slots.

Let delay of the i-1™ cell be j ie, Li.;=]

Letj>d-1

Then, in the d-1 slots before the i CBR packet arrives no. of cells serviced from among
these j packets is j-(d-1).

Hence if the no. of Poisson cells arriving in this interval(n;) is < k+d-j-1 , then
since Li=n;+ 1 -(d-1) , we have,

Li € (k+d-j-1) + (j-d+1) = L; <k = P,(j,k) =0
Consider the other case j < d-1, then in the d-1 slots before the next CBR cell arrives all

these are serviced .
Therefore if i< k = Li<k = P,(j,k) =0

Hence P,(j,k) =0 for j=d-1andn < k+d-j-1
or j<d-landn<k



Reversing the inequalities in the j and n ranges in the above expressions we get

P.(,k)=1 for j+1<dandn =k+d-j-1

or j+12=d-1 and n>k
The above covers the entire range of j and hence the range can simply be written in terms
of n alone as

Py(.k)=1 for n=k+d-j-1
This proves the first part and last part of Eqn.(3.11) .
Now we shall prove the intermediate case ie in the range j+1<d and k<n<d+k-j-1

Let vy(k) be the complementary distribution of the queue length at service instant id due
to only the n Poisson arrivals(ie, discounting the cells already present at (i-1)d).P,(j.k) is

exactly equal to vu(k) iff the queue is empty at any service instant in the interval
((i-1)d,id). Consider the following schematic:

< s >
(i-1)d id-s id

Vy(k) = Pr{queue empty at id-s}
n—k

= Z Pr{queue emptyatid -s, k +s arrivalsin (id - s,id) }

= » Pr{queue emptyatid-s/ k +sarrivalsin (id - s,id) } Pr{k + s arrivalsin (id - s,1d)}

Now, we first find Pr{k+s arrivals in (id-s,id)}.
Poisson arrivals are uniformly distributed over any finite interval.
Hence Probability of having exactly (k+s) arrivals in s slots is

=

Since we have to have a total of n arrivals , if k+s arrivals take place in s slots(1* term in
the above expn.) then remaining n-k-s arrivals have to take place in the remaining d-s
slots(last term in the above expn.). Since we can take any k+s arrivals from the n arrivals
we add a combinatorial term to the above expn. Hence

stk n-s—k
Pr{k+s arrivals in (id-s,id)}.= s -3
s+k)\d d



Now we find Pr{queue empty at id-s/k+s arrivals in (id-s,id)}

Pr{queue empty at id-s/k+s arrivals in (id-s,id)}=
Pr{queue empty at id-s/n-k-s arrivals in ((i-1)d,id-s)}

Define n as the no. of Poisson arrivals in ( (i-1)d+1-1,(i-1)d+1)

Diagramatically the above can be viewed as

} ; } T } T } ..................................

(i-1)d ni o (i-1)d+1 n (-1)d+2  n (i-1)d+2

LetNj= nj+ np+n3+ ...y

If the queue should be empty at id-s, No of arrivals in the first d-s slots should be less
than d-s(as it is a synchronous server, at every time slot a service takes place and a cell is
evicted). There we can write Pr{queue empty at id-s/n-k-s arrivals in ((i-1)d,id-s)} as
Pr{queue empty at id-s/n-k-s arrivals in ((i-1)d,id-s) } =Pr{N<LI=1,2,...d-s/N4.s<n-k-s}
Using Theorem 1,Page 10 in [LT67] we can write

Pr{Ni<l,I=1,2,...d-s/Ng.s<n-k-s}= (d-s-[n-k-s])/(d-s)
= (d-n+k)/(d-s)



