
CHAPTER 5

CONCLUSIONS

In Sec. 3.2 we found analytically that the buffer requirement for CLR<1% for a H of 0.8

was 70. The increase from the Poisson Buffer requirement (11) was by a factor of 6.3.

Table 4.1 gives us the increase in buffer requirement obtained by simulations. For a

Hurst parameter of 0.85 the increase in buffer size was by a factor 8.5 and for an H of

0.75 the increase in buffer size was by a factor of 6. We see a similar increase in buffer

size in both the theoretical and the analytical cases.

From the results obtained we see that a drastic increase in the buffering is required if we

want to maintain the CLR. But any increase in buffering is seen to reflect an increase the

delay of the cells. Also, for the transport of CBR traffic since the cell delay variation is

very high, some additional measures may have to be taken to maintain the guaranteed

QoS. This could take the form of preferential treatment at the switches. Source level or

switch level moulding of the traffic may be done in order to decrease the burstiness of the

traffic.

If the relationship between α and H in (3.17) is found, the 2 Parameter Pareto Process

provides us with a general distribution function which can be used to model any self-

similar process. This distribution can be used to make a random generator that can

produce self-similar traces that can be used in simulations. Though this self-similar trace

generator maybe easier to understand than the exiting methods like the Fast FFT method

[VP97] or Hosking's Procedure [H84], the time-complexity of this method is high.

REFERENCES

[LT67] : Lajos Takacs, Combinational Methods in the the theory of Stochastic

process.

[H84] : J.R.M.Hosking, "Modeling persistence in Hydrological Time series, using

fractional differencing", Water resources Research, pp. 1898 - 1908, Vol. 2 (12), 1984.

[LW91] : W. E. Leland and D. V. Wilson. " High time-resolution measurement and

analysis of LAN traffic: Implications for LAN interconnection ". In Proceeedings of IEEE

Infocomm '91, pp 1360--1366, Bal Harbour, FL, 1991.

[LTWW94] : W.E. Leland , M.S. Taqqu , D.V. Wilson and Walter Willinger , " On the

Self-Similar Nature of Ethernet Traffic (extended version) , " IEEE / ACM Trans.

Networking , vol. 2 , no. 1, pp. 1-15 ,1994

[MRW94] : Duffy. D. McIntosh, A.Rosenstein .M and W.Willinger " Statistical

Analysis of CCSN / SS7 Traffic Data from Working CCS Subnetworks ", IEEE Journal on

Selected Areas in Telecommunication, April 1994.

[B94] : Jan Beran. " Statistics for Long-Memory Processes ". Monographs on Statistics

and Applied Probability. Chapman and Hall, New York, NY, 1994.

[PF95] : Vern Paxon and Sally Floyd , " Wide Area Traffic : The failure of Poisson

Modeling , " IEEE / ACM Trans. Networking , Vol. 3 , pp. 226-244 , 1995 .

[CB95] : Mark E. Crovella and Azer Bestavros " Explaining World Wide Web Traffic

 Self-Similarity". Technical Report TR-95-015.Revised.October 12, 1995

[LTWW95] : Walter Willinger, Murad S. Taqqu, Will E. Leland, and Daniel V.

Wilson. " Self-similarity in high-speed packet traffic: Analysis and modeling of Ethernet

traffic measurements ". Statistical Science, 10(1): 67--85, 1995.

[LTG95] : N.Likhanov, B.Tysbakov, and N.Georganas , " Analysis of an ATM Buffer

with Self-Similar ("Fractal") input Traffic " , Proceedings of IEEE INFOCOM '95 , 1995

[N95] : Ilkka Norros , " On the use of Fractional Brownian Motion in the Theory of

 Connectionless Networks " , IEEE Journal on Selected Areas in Communications ,

 Vol. 13 , No.6 , 1995

[CROV96] : Mark .E.Crovella and A.Bestavros , "Self similarity in World Wide Web

traffic : Evidence and possible causes " , Proceedings, ACM Sigmetrics Conference on

Measurement and Modeling of Computer.

[ENW96] : A. Erramilli , O.Narayan, and W.Willinger , " Experimental Queuing

Analysis with long Range Dependent Packet Traffic, " IEEE / ACM Trans. On

Networking , Vol. 4 , No.2 , pp. 209-223 , 1996

[LS97] : George.C.Lin and Tatsuya Suda , "On the impact of Long-Range-Dependent

Traffic in Dimensioning ATM Network Buffer " ,www.ics.uci.edu

[PKC97]: K.Park,G.Kim,M.Crovella,"On the Effect of Traffic Self -Similarity on Network

Performance", Proceedings of SPIE international conference on Performance and Control

of Network Systems, Nov 1997

[PM97] : M.Parulekar and A.Makowski, " M / G / ∞ Input Processes : A Versatile class

of Models for Network Traffic " , Proceedings of IEEE INFOCOM '97 , 1997.

[VP97] : Vern Paxson ,"Fast Approximate synthesis of Fractional Gaussian Noise to

generate Self -similar Network traffic" ,Computer Communication Review 27(5), pp 5-18,

October 97

[TG97] : Boris Tsybakov and Nicolas D. Georganas , "On Self Similar Traffic in ATM

Queues :Definitions , Overflow Probability Bound, and Cell Delay Distribution , " IEEE

/ ACM Trans. Networking , Vol. 5 , No. 3 , pp. 397-409 , 1997

[S98] : William Stallings , " Self Similar Traffic " . High Speed Networks . Prentice-

Hall International Inc. 1998

[VMG] : Attila Vidacs, Sandor Molnar and Geza Gordos ," The impact of Long Range

Dependence on cell loss in an ATM Wide Area Network "

APPENDIX B

The Matlab source codes for various programs used in our project is given here.

Ø The Fast FFT method for generating Self-Similar Traces

clear all;
n=32768;
H=0.985;
j=sqrt(-1);
const1=2*pi/n;
const2=8*H*pi;
const3=2*sin(pi*H)*gamma(2*H+1);
d=-2*H-1;
d1=-2*H;
for i=1:4
 a(i)=2*i*pi;
 b(i)=a(i);
end
for k=1:n/2
 L=const1*k;
 B=(a(1)+L)^d + (b(1)-L)^d + (a(2)+L)^d + (b(2)-L)^d + (a(3)+L)^d +
(b(3)-L)^d...
 + ((a(3)+L)^d1 + (b(3)-L)^d1 + (a(4)+L)^d1 + (b(4)-L)^d1
)/const2;
 A=const3*(1-cos(L));
 temp=A*(B+L^d);
 f(k)=temp*exprnd(1,1,1);
 z(k)=sqrt(f(k))*exp(j*rand*2*pi);
end

z1(1)=0;

for m=1:n/2
 z1(m+1)=z(m);
end

for m=n/2+1:n-1
 z1(m+1)=conj(z(n-m));

end

tr=real(ifft(z1));
tr=tr+abs(min(tr));
tr=tr*1000;

Ø The Program used to solve for (3.3)
clear all
d=30;
LamD=0.75*d;
alp=150;
const=1/(d*(LamD*(alp-1)-alp));

s1=0;
for i=0:10000
 s1=s1+(i*const + 1/d)^(-alp-1);
end
de=200;
w(1)=1;
for j=0:de %e%
 for k=0:de %f%
 Q(j+1,k+1)=0;
 for n=0:100 %a%
 if (((j+1)>=d) & (n<=(d+k-j-1))) | (((j+1)<d) & (n<=k))%b%
 pN(j+1,k+1) = 0;
 elseif ((j+1)<d) & ((k<n) &(d+k-j-1>=n))
 pN(j+1,k+1)=0;
 for s=1:n-k %c%
 sum1=(factorial(n)/(factorial(s+k)*factorial(n-s-
k)))*(s/d)^(s+k)*(1-s/d)^(n-s-k)...
 *(d-n+k)/(d-s);
 pN(j+1,k+1)=sum1+pN(j+1,k+1);
 end %c%
 else
 pN(j+1,k+1)=1;
 end %b%
 %Q(j+1,k+1)=Q(j+1,k+1)+pN(j+1,k+1)*LamD^n*exp(LamD)/factorial(n);
 Q(j+1,k+1)=Q(j+1,k+1)+pN(j+1,k+1)*((n*const + 1/d)^(-alp-1))*1/s1;
 end %a%
 if (k==0)
 q(j+1,k+1)=0;
 else
 q(j+1,k+1)=Q(j+1,k)-Q(j+1,k+1);
 if q(j+1,k+1)<0
 q(j+1,k+1)=0;
 end

 end
 end %f%
end %e%
c=q;
q=q-eye(de+1);

for j=1:de+1
 q(de+1,j)=1;
end
a=zeros(de+1,1);
a(de+1)=1;
w=inv(q)*a;
for i=1:de-1
 x(i)=0;
 for j=i+1:de
 x(i)=x(i)+w(j);
 end
end
x(de)=0;

t=0:de;

for k=1:100
 f(k)=0;
 for i=1:100
 f(k)=f(k)+w(i,1)*c(i,i+k);
 end
end
f=f/sum(f);
f=f*32768;
buflen(f,0.99)

