
CHAPTER 5 

CONCLUSIONS 

 

In Sec. 3.2 we found analytically that the buffer requirement for CLR<1% for a H of 0.8 

was 70. The increase from the Poisson Buffer requirement (11) was by a factor of 6.3. 

Table 4.1 gives us the increase in buffer requirement obtained by simulations.  For a 

Hurst parameter of 0.85 the increase in buffer size was by a factor 8.5 and for an H of 

0.75 the increase in buffer size was by a factor of 6.  We see a similar increase in buffer 

size in both the theoretical and the analytical cases.   

 

From the results obtained we see that a drastic increase in the buffering is required if we 

want to maintain the CLR. But any increase in buffering is seen to reflect an increase the 

delay of the cells. Also, for the transport of CBR traffic since the cell delay variation is 

very high, some additional measures may have to be taken to maintain the guaranteed 

QoS. This could take the form of preferential treatment  at the switches. Source level or 

switch level moulding of the traffic may be done in order to decrease the burstiness of the 

traffic.  

 

If the relationship between α and H in  (3.17) is found, the 2 Parameter Pareto Process 

provides us with a general distribution function which can be used to model any self-

similar process.  This distribution can be used to make a random generator that can 

produce self-similar traces that can be used in simulations.  Though this self-similar trace 

generator maybe easier to understand than the exiting methods like the Fast FFT method 

[VP97] or Hosking's Procedure [H84], the time-complexity of this method is high. 
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APPENDIX B 

The Matlab source codes for various programs used in our project is given here. 

 

Ø The Fast FFT method for generating Self-Similar Traces  

clear all; 
n=32768; 
H=0.985; 
j=sqrt(-1); 
const1=2*pi/n; 
const2=8*H*pi; 
const3=2*sin(pi*H)*gamma(2*H+1); 
d=-2*H-1; 
d1=-2*H; 
for i=1:4 
   a(i)=2*i*pi; 
   b(i)=a(i); 
end 
for k=1:n/2 
   L=const1*k; 
   B=(a(1)+L)^d + (b(1)-L)^d + (a(2)+L)^d + (b(2)-L)^d + (a(3)+L)^d + 
(b(3)-L)^d... 
      +  ( (a(3)+L)^d1 + (b(3)-L)^d1 + (a(4)+L)^d1 + (b(4)-L)^d1 
)/const2; 
   A=const3*(1-cos(L)); 
   temp=A*(B+L^d); 
   f(k)=temp*exprnd(1,1,1); 
   z(k)=sqrt(f(k))*exp(j*rand*2*pi); 
end 
 
z1(1)=0; 
 
for m=1:n/2 
   z1(m+1)=z(m); 
end 
 
for m=n/2+1:n-1 
   z1(m+1)=conj(z(n-m)); 
 
end 
 
tr=real(ifft(z1)); 
tr=tr+abs(min(tr)); 
tr=tr*1000; 
 
 

Ø The Program used to solve for (3.3)  
clear all 
d=30; 
LamD=0.75*d; 
alp=150; 
const=1/(d*(LamD*(alp-1)-alp)); 



s1=0; 
for i=0:10000 
   s1=s1+(i*const + 1/d)^(-alp-1); 
end 
de=200; 
w(1)=1; 
for j=0:de  %e% 
   for k=0:de  %f% 
      Q(j+1,k+1)=0;   
      for n=0:100 %a% 
         if ( ((j+1)>=d) & (n<=(d+k-j-1)) ) | ( ((j+1)<d) & (n<=k) )%b% 
            pN(j+1,k+1) = 0; 
         elseif ((j+1)<d) & ((k<n) &(d+k-j-1>=n))    
            pN(j+1,k+1)=0; 
            for s=1:n-k %c% 
               sum1=(factorial(n)/(factorial(s+k)*factorial(n-s-
k)))*(s/d)^(s+k)*(1-s/d)^(n-s-k)... 
                  *(d-n+k)/(d-s); 
               pN(j+1,k+1)=sum1+pN(j+1,k+1); 
            end %c% 
         else 
          pN(j+1,k+1)=1; 
         end %b% 
      %Q(j+1,k+1)=Q(j+1,k+1)+pN(j+1,k+1)*LamD^n*exp(LamD)/factorial(n);  
     Q(j+1,k+1)=Q(j+1,k+1)+pN(j+1,k+1)*((n*const + 1/d)^(-alp-1))*1/s1; 
   end %a% 
      if (k==0) 
         q(j+1,k+1)=0; 
      else 
         q(j+1,k+1)=Q(j+1,k)-Q(j+1,k+1); 
         if q(j+1,k+1)<0 
            q(j+1,k+1)=0; 
          end 
          
      end 
   end  %f% 
end  %e%     
c=q; 
q=q-eye(de+1); 
 
for j=1:de+1 
   q(de+1,j)=1; 
end 
a=zeros(de+1,1); 
a(de+1)=1; 
w=inv(q)*a; 
for i=1:de-1 
   x(i)=0; 
   for j=i+1:de  
      x(i)=x(i)+w(j); 
   end 
end 
x(de)=0; 
 
 
t=0:de; 
 



for k=1:100 
   f(k)=0; 
   for i=1:100 
      f(k)=f(k)+w(i,1)*c(i,i+k); 
   end 
end 
f=f/sum(f); 
f=f*32768; 
buflen(f,0.99) 
 



  

 


