APPENDIX A

This appendix gives the proofs of the equations given in Chapter 3.

$>$ Proof of Eqn (3.3)

$$
\mathrm{w}_{\mathrm{k}}=\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{j}} \mathrm{q}_{\mathrm{j} \mathrm{k}}
$$

From Eqn (3.1) ,we have

$$
\begin{aligned}
\mathrm{W}_{\mathrm{k}} & =\operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}}=\mathrm{k}\right\} \\
& =\sum_{\mathrm{j}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{i}}=\mathrm{k}, \mathrm{~W}_{\mathrm{i}-1}=\mathrm{j}\right\} \\
& =\sum_{\mathrm{j}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{i}}=\mathrm{k} / \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\} \operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\} \\
& =\sum_{\mathrm{j}} \mathrm{q}_{\mathrm{jk}} \mathrm{~W}_{\mathrm{j}}
\end{aligned}
$$

$$
=\sum_{\mathrm{j}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{i}}=\mathrm{k}, \mathrm{~W}_{\mathrm{i}-1}=\mathrm{j}\right\} \quad \begin{aligned}
& \text { as dependence between delays is } \\
& \text { Markovian }
\end{aligned}
$$

writing the above expn. in terms of conditional probabilities
using (3.1) and (3.2)

Proof of Eqn(3.6)

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{k})=\sum_{\mathrm{i} \geq 0} \mathrm{w}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}, \mathrm{i}+\mathrm{k}}^{(\mathrm{n})}
$$

From the following figure we see that : $\quad \mathrm{U}_{1}+\mathrm{d}=\mathrm{W}_{1}+\mathrm{d}-\mathrm{W}_{0} \Rightarrow \mathrm{U}_{1}=\mathrm{W}_{1}-\mathrm{W}_{0}$

Similarly from Fig.3.1, we see that $\mathrm{U}_{\mathrm{n}}=\mathrm{W}_{\mathrm{n}}-\mathrm{W}_{0}$
Eqn (3.5) gives, $\quad \mathrm{f}_{\mathrm{n}}(\mathrm{k})=\operatorname{Pr}\left\{\mathrm{U}_{\mathrm{n}}=\mathrm{k}\right\}$
Using the expression for U_{n} derived above : $\quad \mathrm{f}_{\mathrm{n}}(\mathrm{k})=\operatorname{Pr}\left\{\mathrm{W}_{\mathrm{n}}-\mathrm{W}_{0}=\mathrm{k}\right\}$

$$
=\operatorname{Pr}\left\{\mathrm{W}_{\mathrm{n}}=\mathrm{k}+\mathrm{W}_{0}\right\}
$$

writing this in terms of the joint probability we get

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{k})=\sum_{\mathrm{i} \geq 0} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{n}}=\mathrm{k}+\mathrm{W}_{0}, \mathrm{~W}_{0}=\mathrm{i}\right\}
$$

$$
\begin{aligned}
& \text { i.e, } \\
& \text { i.e, }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{n}}(\mathrm{k})=\sum_{\mathrm{j}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{n}}=\mathrm{k}+\mathrm{W}_{0} / \mathrm{W}_{0}=\mathrm{i}\right\} \operatorname{Pr}\left\{\mathrm{W}_{0}=\mathrm{i}\right\} \\
& \mathrm{f}_{\mathrm{n}}(\mathrm{k})=\sum_{\mathrm{j}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{n}}=\mathrm{k}+\mathrm{i} / \mathrm{W}_{0}=\mathrm{i}\right\} \operatorname{Pr}\left\{\mathrm{W}_{0}=\mathrm{i}\right\}
\end{aligned}
$$

using (3.1) and (3.2)

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{k})=\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}, \mathrm{i}+\mathrm{k}}^{(\mathrm{n})}
$$

where, $\quad q_{i, j}^{(n)}$ is the i-j component of the nth power of the transition matrix, $q_{j k}$.

$>$ Proof of Eqn (3.10)

$$
\mathrm{Q}(\mathrm{j}, \mathrm{k})=\sum_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(\mathrm{j}, \mathrm{k}) \frac{(\lambda d)^{n}}{n!} e^{-\lambda d}
$$

Eqn (3.7) gives the definition of $\mathrm{Q}(\mathrm{j}, \mathrm{k})$ i.e, $\mathrm{Q}(\mathrm{j}, \mathrm{k})=\operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}}>\mathrm{k} / \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}$
writing this in terms of the joint probability we get

$$
\mathrm{Q}(\mathrm{j}, \mathrm{k})=\sum_{\mathrm{n}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{i}}>\mathrm{k}, \mathrm{n} \text { Poisson arrivals in }((\mathrm{i}-1) \mathrm{d}, \mathrm{id}) / \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}
$$

The following sets of equations are obtained using the relation between joint probability and conditional probability.

$$
\mathrm{Q}(\mathrm{j}, \mathrm{k})=\frac{\sum_{\mathrm{n}} \operatorname{Pr}\left\{\mathrm{~W}_{\mathrm{i}}>\mathrm{k}, \mathrm{n} \text { Poisson arrivalsin}((\mathrm{i}-1) \mathrm{d}, \mathrm{id}), \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}}{\operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}}
$$

$=\frac{\sum_{\mathrm{n}} \operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}}>\mathrm{k} / \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}, \mathrm{n} \text { Poisson arrivals in }((\mathrm{i}-1) \mathrm{d}, \mathrm{id})\right\} \operatorname{Pr}\left\{\mathrm{n} \text { Poisson arrivalsin }((\mathrm{i}-1) \mathrm{d}, \mathrm{id}), \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}}{\operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}}$
$=\sum_{\mathrm{n}} \operatorname{Pr}\left\{\mathrm{W}_{\mathrm{i}}>\mathrm{k} / \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}, \mathrm{n}\right.$ Poisson arrivals in $\left.((\mathrm{i}-1) \mathrm{d}, \mathrm{id})\right\} \operatorname{Pr}\left\{\mathrm{n}\right.$ Poisson arrivals in $\left.((\mathrm{i}-1) \mathrm{d}, \mathrm{id}) / \mathrm{W}_{\mathrm{i}-1}=\mathrm{j}\right\}$

Using Eqn (3.8) and the fact that the Poisson arrivals is independent of the delay of the i-1 ${ }^{\text {th }}$ cell we have

$$
\mathrm{Q}(\mathrm{j}, \mathrm{k})=\sum_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(\mathrm{j}, \mathrm{k}) \frac{(\lambda d)^{n}}{n!} e^{-\lambda d}
$$

$>$ Proof of Eqn (3.11)

$$
P_{\mathrm{n}}(\mathrm{j}, \mathrm{k})= \begin{cases}0 & \text { for }(\mathrm{j}+1 \geq \mathrm{d} \text { and } \mathrm{n} \leq \mathrm{d}+\mathrm{k}-\mathrm{j}-1) \text { or }(\mathrm{j}+1<\mathrm{d} \text { and } \mathrm{n} \leq \mathrm{k}) \\ \sum_{s=1}^{n-k}\binom{\mathrm{n}}{\mathrm{~s}+\mathrm{k}}\left(\frac{\mathrm{~s}}{\mathrm{~d}}\right)^{s+k}\left(1-\frac{\mathrm{s}}{\mathrm{~d}}\right)^{n-s-k} \frac{\mathrm{~d}-\mathrm{n}+\mathrm{k}}{\mathrm{~d}-\mathrm{s}} & \text { for } \mathrm{j}+1<\mathrm{d} \text { and } \mathrm{k}<\mathrm{n} \leq \mathrm{d}+\mathrm{k}-\mathrm{j}-1 \\ 1 & \text { for } \mathrm{n}>\mathrm{d}+\mathrm{k}-\mathrm{j}-1\end{cases}
$$

As explained in Sec3.1, since the service discipline is assumed to be FIFO, W_{i} is identical to the queue length L_{i}, as seen by the $i^{\text {th }}$ periodic cell.
Consider the following scenario:
In between arrival of two CBR cells ((i-1)d ,id) there are d slots.
Let delay of the $i-1{ }^{\text {th }}$ cell be j ie, $L_{i-1}=j$
Let $\mathrm{j} \geq \mathrm{d}-1$
Then, in the $\mathrm{d}-1$ slots before the $\mathrm{i}^{\text {th }}$ CBR packet arrives no. of cells serviced from among these j packets is j -(d-1).

Hence if the no. of Poisson cells arriving in this interval $\left(n_{i}\right)$ is $\leq k+d-j-1$, then since $L_{i}=n_{i}+l_{i-1}-(d-1)$, we have,
$\mathrm{L}_{\mathrm{i}} \leq(\mathrm{k}+\mathrm{d}-\mathrm{j}-1)+(\mathrm{j}-\mathrm{d}+1) \Rightarrow \mathrm{L}_{\mathrm{i}} \leq \mathrm{k} \Rightarrow \mathrm{P}_{\mathrm{n}}(\mathrm{j}, \mathrm{k})=0$
Consider the other case $\mathrm{j} \leq \mathrm{d}-1$, then in the $\mathrm{d}-1$ slots before the next CBR cell arrives all these are serviced .
Therefore if $\mathrm{n}_{\mathrm{i}} \leq \mathrm{k} \Rightarrow \mathrm{L}_{\mathrm{i}} \leq \mathrm{k} \Rightarrow \mathrm{P}_{\mathrm{n}}(\mathrm{j}, \mathrm{k})=0$

Hence $P_{n}(j, k)=0 \quad$ for $\mathrm{j} \geq \mathrm{d}-1$ and $\mathrm{n} \leq \mathrm{k}+\mathrm{d}-\mathrm{j}-1$ or $\mathrm{j} \leq \mathrm{d}-1$ and $\mathrm{n} \leq \mathrm{k}$

Reversing the inequalities in the j and n ranges in the above expressions we get
$P_{n}(j, k)=1 \quad$ for $\begin{aligned} & j+1<d \text { and } n \geq k+d-j-1 \\ & \\ & \\ & \text { or } j+1 \geq d-1 \text { and } n>k\end{aligned}, ~$
The above covers the entire range of j and hence the range can simply be written in terms of n alone as
$P_{n}(j, k)=1$ for $n \geq k+d-j-1$
This proves the first part and last part of Eqn.(3.11).
Now we shall prove the intermediate case ie in the range $\mathrm{j}+1<\mathrm{d}$ and $\mathrm{k}<\mathrm{n}<\mathrm{d}+\mathrm{k}-\mathrm{j}-1$
Let $\nu_{n}(k)$ be the complementary distribution of the queue length at service instant id due to only the n Poisson arrivals(ie, discounting the cells already present at $(\mathrm{i}-1) \mathrm{d}) \cdot \mathrm{P}_{\mathrm{n}}(\mathrm{j}, \mathrm{k})$ is exactly equal to $v_{\mathrm{n}}(\mathrm{k})$ iff the queue is empty at any service instant in the interval ((i-1)d,id). Consider the following schematic:

$$
\begin{aligned}
\mathrm{v}_{\mathrm{n}}(\mathrm{k}) & =\operatorname{Pr}\{\text { queue empty at id- } \mathrm{s}\} \\
& \left.=\sum_{\mathrm{s}=1}^{\mathrm{n}-\mathrm{k}} \operatorname{Pr}\{\text { queue empty at id }-\mathrm{s}, \mathrm{k}+\mathrm{s} \text { arrivals in (id }-\mathrm{s}, \mathrm{id})\right\} \\
& =\sum_{\mathrm{s}=1}^{\mathrm{n}-\mathrm{k}} \operatorname{Pr}\{\text { queue empty at id }-\mathrm{s} / \mathrm{k}+\mathrm{s} \text { arrivals in }(\mathrm{id}-\mathrm{s}, \mathrm{id})\} \operatorname{Pr}\{\mathrm{k}+\mathrm{s} \text { arrivalsin }(\mathrm{id}-\mathrm{s}, \mathrm{id})\}
\end{aligned}
$$

Now, we first find $\operatorname{Pr}\{\mathrm{k}+\mathrm{s}$ arrivals in (id-s, id$)\}$.
Poisson arrivals are uniformly distributed over any finite interval.
Hence Probability of having exactly ($\mathrm{k}+\mathrm{s}$) arrivals in s slots is

$$
\left(\frac{\mathrm{s}}{\mathrm{~d}}\right)^{s+k}\left(1-\frac{\mathrm{s}}{\mathrm{~d}}\right)^{n-s-k}
$$

Since we have to have a total of n arrivals, if $\mathrm{k}+\mathrm{s}$ arrivals take place in s slots $\left(1^{\text {st }}\right.$ term in the above expn.) then remaining $n-k-s$ arrivals have to take place in the remaining d -s slots(last term in the above expn.). Since we can take any $\mathrm{k}+\mathrm{s}$ arrivals from the n arrivals we add a combinatorial term to the above expn. Hence

$$
\operatorname{Pr}\{\mathrm{k}+\mathrm{s} \text { arrivals in (id-s,id) }\}=\binom{\mathrm{n}}{\mathrm{~s}+\mathrm{k}}\left(\frac{\mathrm{~s}}{\mathrm{~d}}\right)^{\mathrm{s}+\mathrm{k}}\left(1-\frac{\mathrm{s}}{\mathrm{~d}}\right)^{\mathrm{n}-\mathrm{s}-\mathrm{k}}
$$

Now we find Pr \{queue empty at id-s/k+s arrivals in (id-s,id)\}
$\operatorname{Pr}\{q u e u e$ empty at $\mathrm{id}-\mathrm{s} / \mathrm{k}+\mathrm{s}$ arrivals in (id-s,id) $\}=$ $\operatorname{Pr}\{q u e u e ~ e m p t y ~ a t ~ i d-s / n-k-s ~ a r r i v a l s ~ i n ~((i-1) d, i d-s)\} ~$

Define n_{1} as the no. of Poisson arrivals in ((i-1)d+1-1,(i-1)d+1)
Diagramatically the above can be viewed as

$\begin{array}{lllllll}\text { (i-1)d } & \mathrm{n}_{1} & (\mathrm{i}-1) \mathrm{d}+1 & \mathrm{n}_{2} & (\mathrm{i}-1) \mathrm{d}+2 & \mathrm{n}_{3} & (\mathrm{i}-1) \mathrm{d}+2\end{array}$

Let $\mathrm{N}_{\mathrm{l}}=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\ldots . . \mathrm{n}_{1}$
If the queue should be empty at id-s, No of arrivals in the first d-s slots should be less than d-s(as it is a synchronous server, at every time slot a service takes place and a cell is

$\operatorname{Pr}\{$ queue empty at id-s/n-k-s arrivals in $((\mathrm{i}-1) \mathrm{d}, \mathrm{id}-\mathrm{s})\}=\operatorname{Pr}\left\{\mathrm{N}_{\mathrm{l}}<\mathrm{l}, \mathrm{l}=1,2, \ldots \mathrm{~d}-\mathrm{s} / \mathrm{N}_{\mathrm{d}-\mathrm{s}}<\mathrm{n}-\mathrm{k}-\mathrm{s}\right\}$
Using Theorem 1,Page 10 in [LT67] we can write

$$
\begin{aligned}
\operatorname{Pr}\left\{\mathrm{N}_{\mathrm{l}}<1, \mathrm{l}=1,2, \ldots \mathrm{~d}-\mathrm{s} / \mathrm{N}_{\mathrm{d}-\mathrm{s}}<\mathrm{n}-\mathrm{k}-\mathrm{s}\right\} & =(\mathrm{d}-\mathrm{s}-[\mathrm{n}-\mathrm{k}-\mathrm{s}]) /(\mathrm{d}-\mathrm{s}) \\
& =(\mathrm{d}-\mathrm{n}+\mathrm{k}) /(\mathrm{d}-\mathrm{s})
\end{aligned}
$$

