
CHAPTER 3 

 

AN ANALYTICAL APPROACH TO ESTIMATE JITTER 

 

 
In this chapter an analytical approach to estimate jitter is given.  Section 3.1 deals with 

the analytical derivation of jitter for the CBR traffic when multiplexed with Poisson 

traffic. This is basically a review of the work done in [RG92]. Section 3.2 shows how this 

derivation can be modified to calculate jitter when the CBR traffic is multiplexed with 

self-similar background traffic.  The proofs for all the expressions derived in this section 

are given in Appendix A. 

 

 

3.1 Jitter in ATM networks handling Poisson traffic 

 

In [RG92], jitter is considered in a discrete time process where the time-unit is arbitrary 

ie they consider a multiplexer having  a service time of 1 cell/ time slot.   As shown in 

Fig 3.1 a CBR (periodic) stream is considered which has a inter-cell interval of 'd' time 

slots.  The ith  cell has a sojourn time in the system(multiplex or network) of D+Wi  , 

where D is a constant (propagation time, etc) and Wi  is a non-negative delay component 

introduced by the multiplexer (waiting time in the muliplexer queue)  .  Without loss of 

generality D is assumed to be 0 for the rest of this section( D depends only on the route 

followed by the cells of the connection considered). 

 

Wi is assumed to constitute a stationary ergodic process with a probability distribution: 

 

wk=Pr{Wi=k}  for k ≥ 0         ...(3.1) 

 



It is further assumed that the dependence  between successive delays is first-order 

Markovian (ie delay of the ith  cell  depends only on the delay of the (i-1)th  cell ), 

characterised by the transition probabilities:  

qjk=Pr{Wi=k / Wi-1=j}   for  j,k≥0                                                                                 ...(3.2) 

Then  wk satisfies the equation: 

Fig 3.1  The Multiplexer Model  
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Inter -cell exit time (delay) distributions 

 

Let 0 be an arbitrary time instant and let τ0 be the cell exit instant immediately preceding 

0.  Let τi  ,i ≥ 1 , be the exit instants of subsequent cells.  Define the random variable Un  : 

 

Un = τn - τ0 - nd    � τn - τ0 = Un + nd                                                                         ...(3.4) 

 

Un  is the variation of the nth  order inter-exit time w.r.t  the inter-arrival interval 'nd'. 

Jitter is characterised by the distributions of the random variable Un, n ≥ 1 , and 

especially that of U1 = W1-W0 . The distribution of U1 allows comparisons between the 

inter-arrival in the jittered process with that in the initial flow that is constant and exactly 

equal to d. 

 

Let fn(k)  be the distribution of Un ie,: 

 

fn(k) =Pr{Un=k}          ...(3.5) 

 

It can be proved that  

 

 

Jitter due to a multiplexing stage 

 

It is assumed that the multiplex receives the superposition of a periodic stream of cells of 

period 'd' (CBR stream) and a Poisson stream of rate λ.  It is assumed that the multiplex  

can only start to transmit cells at specific instants....,-2,-1,0,1,2,..., and the periodic cells 

arrive just before a service instant (this implies that 'd' is an integer).  With these 

assumptions, the queue at the moment of a periodic arrival is a Markov process. 
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(n)
ji,qwhere,  is the i-j component of the nth power of the transition matrix, qjk, . 



Assuming FIFO service, the queue length at the  ith periodic cell arrival is identical to the 

waiting time Wi introduced earlier. 

 

To calculate the transition probabilities qij we introduce the conditional probabilities: 

 

Q(j,k)  =  Pr{Wi>k/Wi-1=j}            ...(3.7) 

Pn(j,k) =  Pr{Wi>k/Wi-1=j and n Poisson arrivals in ((i-1)d,id)}                          ...(3.8) 

 

We then have from the definitions of  qjk  and Q(j,k-1)                                                                                        

qjk=Q(j,k-1) - Q(j,k),           ...(3.9) 

 

It can be shown that 

 

It can also be proved that  

 

 

 

 

 

                       ...(3.11) 

 

The delay distribution wk is deduced on solving the state equations (3.3).  To solve these 

equations, first Pn(j,k)  is calculated  using (3.11) .  Using this is in (3.10) Q(j,k) is 

obtained .  qjk   is determined from (3.9) using Q(j,k) calculated above. wk  is then 

obtained using (3.3) .   Next f1(k) is calculated using (3.6).   f1(k)  gives the probability 
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that the first cell is delayed with respect to the zeroeth cell by 'k' slots.  Since there is no 

absolute time reference it can be inferred that f1(k)  gives the probability that the nth cell 

is delayed with respect to the n-1th cell by 'k'.  We now find that value of k which gives us 

99% of the area under the f1(k)  curve.  The significance of this value of k is that it gives 

us the value of the buffer size required so that the nth  cell is not lost more than 99% of the 

time when compared to the n-1th cell. Since this true for all n, the value of k gives the 

buffer size required so that the CLR does not exceed 1%. 

 

When done for Poisson background traffic with a λ=0.75 and the CBR stream's period 

d=30 the buffer size required was found to be 11 slots. 

 

3.2 Jitter in ATM networks handling Self-Similar traffic 

 

In order to analyse jitter for the self-similar case, we need the distribution function  of the 

self-similar traffic.  We propose a distribution function   that models self-similar traffic 

by capturing its heavy-tailed behaviour.  Heavy-tailed distributions  are generally used to 

describe traffic processes such as packet inter-arrival times and burst lengths.  The 

distribution of a random variable X is said to be heavy-tailed if 

Pr[X>x] ~ x -α    ,   α>0 

 

One common heavy tailed function used to model active periods of  'on-off' sources is the 

Pareto distribution [PKC] with the density function  

The Hurst parameter in this case is given by H=(3-α)/2 

The Pareto process cannot be used to model the arrival process as it is a continuous 

distribution.  Hence we looked at a discretised version of the Pareto process as suggested 

in [TG97] : 
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The mean of this process is given by  

 

The infinite summations in the above expressions were evaluated using the 

approximation: 

    

 Hence (3.14) reduced to  

E[N]=α/(α-1)                                                                                                             ...(3.16) 

 

We see that if we fix the mean , α gets fixed and hence the process gets fixed ie this 

becomes a single parameter process, the parameter  being  the mean.  Such a density 

function cannot be used to model a self-similar arrival processes as we need to  be able to 

simulate various traffic traces with different means for the same Hurst parameter. For the 

existing self-similarity models like  the FGN , the mean, variance and the Hurst 

parameter are independent of each other ie, it is a 3 parameter process.  But a density 

function does not exist for this model, it is only defined by means of its autocorrelation. 

 

We propose a modified version of the discrete Pareto process: a 2 parameter, discrete 

Pareto Process defined  by 

 

Pr{N(t)=n}=Probability of n arrivals in time t  
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The parameter α is a function of the Hurst parameter.The constant k helps us to get 

desired means for a fixed value of H.The three parameters for this process is the H and 

the mean. The mean of this process was found using the approximation in (3.15).  

 

The motivation for us to add the 1/t term in (3.17) stemmed from two reasons. Firstly,  In 

(3.13) n is not allowed to take the value 0.  But zero arrivals should be possible in  an 

arrival process. Hence we needed to add a term to n in the density function to make it 

possible for n=0. Secondly, it is obvious that the mean no. of arrivals in a time t should 

increase with an increase in t We see from (3.18) that as t increases E[N(t)] increases.  

Had we added t instead of 1/t , then the mean would have decreased with an increase in d. 

We also see that  by fixing α the mean does not get fixed ie, for the same value of α , by 

varying k we can obtain different means. This was the reason for including  k in (3.17).  

We created a random no. generator using the distribution function given in (3.17) and 

found that α = 1.5 yielded a Hurst parameter of around 0.8.  

The exact  relationship between α and H was'nt found. 

 

To use this in the analytical method described in Sec.(3.1), only one change is made. In 

(3.10), the Poisson distribution function is replaced by the distribution function of the 2-

Parameter discrete Pareto Process ie , 

One important point to be noted here is that in deriving (3.11), we make use of the fact 

that Poisson arrivals are uniformly distributed in any finite interval.  It is not wrong to 

make the same assumption for self-similar traffic because as given in [weN] self-

similarity depends only the no. of arrivals in a  given time interval and not on the internal 

distribution of the arrivals. The authors of [weN]   have reported to have got the same H 
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parameter for traces in which they shuffled all the arrivals in a time interval  maintaining 

the no. of arrivals in the time interval. 

 

As described in Sec3.1, the buffer length was calculated in this case ie, Self-similar 

background traffic described by (3.17) with H=0.8 (α=1.5), d= 0 and a mean of 22.5 (to 

make the utilisation 75%)  for a CLR of less than 1%. 

The buffer length was found to be 70 as against a buffer length of 11 for Poisson traffic. 

 

 

 

      


